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1. Introduction

Joining extensive discussions in the literature on how global shocks transmit across inter-

national equity markets (see, for instance, Colacito, Croce, Gavazzoni, and Ready (2018)), we

propose a new approach to examine which, and to what extent, common risk variables drive eq-

uity risk premiums across countries at short (within-one-year) horizons from the perspective of

a US investor. The main intuition of our analysis is that international stock return predictabil-

ity should be driven by economic determinants that are common to both the global predictors

and the global equity risk compensations across countries. An asset pricing framework with the

perspective of a US (global) investor should help motivate these common economic determi-

nants and infer their relative importance in driving global equity risk compensations at various

horizons. We formalize this intuition in this paper. In particular, we link empirical evidence

for the dynamics and international stock return predictability of global predictors with impli-

cations from a parsimonious no-arbitrage asset pricing framework featuring time-varying and

asymmetric economic uncertainties, pure financial market uncertainties, and risk aversion.

We find that 70-80% of the dynamics of the global equity risk premium for horizons

under seven months may be driven by US economic uncertainties, while US risk aversion and

financial market uncertainties may matter more for the global risk premium at longer horizons.

Interestingly, both US good and bad economic uncertainties have positive effects on the global

equity risk premium, with the bad uncertainty effect being more persistent. The global equity

risk compensation exhibits countercyclical dynamics and a downward-sloping term structure

particularly during downturns. Our framework also allows us to study cross-country variations

in global risk compensations. We find that US investors demand a lower global macroeconomic

risk compensation but a higher global pure financial market risk compensation for countries

with higher global integration.

For our empirical evidence, we consider the US variance risk premium’s downside and

upside components (DVP and UVP, respectively) as our two main global predictors, aiming to

maximally infer information about short-horizon global equity risk compensations, in light of

the recent evidence (see, e.g., Kilic and Shaliastovich (2019), Bollerslev, Marrone, Xu, and Zhou

(2014), and Feunou, Jahan-Parvar, and Okou (2017)). In the first part of the paper, we calculate

DVP and UVP as the difference between the risk-neutral and physical expectations of one-

month-ahead stock return variance, conditional on whether the one-month-ahead stock price is
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below (bad states) or above (good states) the current stock price, respectively. We approximate

the risk-neutral expectation of the downside (upside) stock return variance using puts (calls) on

the S&P 500 index at different strikes and maturities; and we obtain the physical expectation

of the downside (upside) stock return variation using the best forecast of the downside (upside)

realized variance given a set of forecasting models. Our sample spans from April 1991 to

December 2019. We find that DVP and UVP behave quite differently. The total VP and its

downside component are highly correlated, significantly positive, and countercyclical with large

positive spikes around key episodes of market stress and economic turmoil. In contrast, UVP

is positive but smaller in magnitude, less persistent, and procyclical with occasional negative

spikes, some of which coincide with major positive DVP spikes.

We then examine the predictive power of DVP and UVP for the excess returns of 22

countries’ headline stock indexes expressed in US dollars. Considering both pooled and country-

level predictive frameworks, we find evidence that decomposing the US VP into its asymmetric

components yields gains in predicting international stock returns, and that DVP and UVP

together dominate other US predictors such as the US Treasury bill rate and the earnings

yield (Rapach, Strauss, and Zhou (2013), Bollerslev, Marrone, Xu, and Zhou (2014)) at short

horizons. In addition, the predictability patterns of DVP and UVP are considerably different

along several dimensions. The international stock return predictability improves the most at

horizons of less than seven months, and this improvement is mainly explained by UVP at very

short horizons and by DVP at horizons between four and seven months. The predictive power of

DVP follows a hump-shaped pattern peaking at mid four- to seven-month horizons, while that

of UVP follows a decreasing pattern after peaking at the one-month horizon. The predictability

patterns are robust to using alternative estimates of the VP components and controlling for

other US predictors.

The second part of the paper formalizes the main intuition of our exercise using min-

imum structural assumptions, therefore allowing the data to speak for themselves. We first

motivate potential economic determinants of both US VP(s) and international equity risk pre-

miums in a conceptual framework. Given the empirical focus and the US investor perspective

of this paper, we write down a flexible US log pricing kernel that is sensitive to changes in

macroeconomic conditions, investor risk aversion, and stock market illiquidity. These reduced-

form kernel state variables and shocks can be motivated from both consumption-based (see

e.g. Campbell and Cochrane (1999), Bansal and Yaron (2004), Segal, Shaliastovich, and Yaron
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(2015), Bekaert, Engstrom, and Xu (forthcoming)) and intermediary-based asset pricing liter-

ature (see e.g. Gromb and Vayanos (2002), Brunnermeier and Pedersen (2009), Adrian, Etula,

and Muir (2014)). Moreover, the interplay between macroeconomic uncertainty and investors’

attitudes toward risk has also played a prominent role in the variance premium literature (rare

disaster models in, e.g., Gabaix (2012), long-run risk models in, e.g., Bollerslev, Tauchen, and

Zhou (2009), models with habit formation and bad environment-good environment dynamics, as

in Bekaert and Engstrom (2017), and models with time-varying fear in, e.g., Drechsler (2013)).

Recently, an intermediary-based explanation for the dynamics of the variance risk premium

can also be found in Fan, Imerman, and Dai (2016). We construct parsimonious state vari-

able processes with VAR and composite heteroskedastic gamma shock assumptions in order to

flexibly describe the tail behaviors of our key state variables. For instance, we follow Bekaert

and Engstrom (2017) and model changes in macroeconomic conditions with two centered het-

eroskedastic gamma shocks with their second moments capturing “good” and “bad” economic

uncertainties, respectively. We similarly assume asymmetry and heteroskedasticity in market

illiquidity and risk aversion shocks. Lastly, to model the transmission of global/US shocks to

other countries, we allow for country cash flow growths to be exposed to common (US) state

variables and shocks.

The model solution has two relevant implications for our research objective. First, both

the dynamics of US VP (and its components) and the global compensation part of international

equity risk premiums should be driven by the second moments of kernel shocks. Second, this

commonality implies the various excess return predictability channels. When confronted with

the data, our model allows us to identify the relative importance of these common risk premium

state variables in DVP and UVP and in international equity risk premiums at various horizons,

which is the main contribution of the paper.

We first find that 62% of the DVP variability is explained by risk aversion and 30% by

bad economic uncertainty. Under volatile economic conditions, DVP becomes more sensitive

to high market illiquidity uncertainty, a source of pure financial market risk in our framework.

UVP, on the other hand, increases with the procyclical good economic uncertainty through the

hedging demand of upside risk, as well as countercyclical state variables (such as risk aversion

and illiquidity uncertainty) through the general hedging demand for variance risk. These two

channels counteract, resulting in the relatively less persistent and smaller UVP than DVP.

We then identify the relative importance of common economic determinants in interna-
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tional equity risk premiums using the economic interpretations of the VP components and their

international stock return predictive coefficients. We utilize the whole cross-country of predic-

tive coefficients; to avoid heavy parameterization, we use two integration measures to describe

the cross-country differences in the predictive coefficients: economic integration, proxied by the

ratio of total imports and exports to GDP, and financial integration, proxied by the ratio of

total asset and liability holdings from one country to the rest of the world to GDP.

For our global-level inferences, we calibrate a country with a median level of economic and

financial integration. We find that global equity risk premium’s sensitivities to the common risk

premium determinants – US economic uncertainty, risk aversion, and illiquidity uncertainty –

change over the horizon. Both US good and bad economic uncertainties contribute positively to

the global equity risk premium, which may be consistent with the recent domestic (US) intuition

in Segal, Shaliastovich, and Yaron (2015). However, the US bad uncertainty effects appear the

strongest for four- to seven-month global risk premiums. Risk aversion and pure financial

uncertainty (stock market illiquidity uncertainty), on the other hand, have a stable and positive

impact for all horizons, with one SD increase leading to a two to three annualized percent

increase in the average country’s equity risk premium. Consistently, a Jackknife exercise shows

that DVP predicts international stock excess returns mostly through their common determinant,

bad economic uncertainty, while the good economic uncertainty channel is potentially crucial

for explaining the pattern of the international predictability of UVP.

As a result, our evidence shows that good and bad US economic risk compensations

may be crucial in driving the commonality in international equity premiums, explaining 70-

80% at horizons under seven months, while financial risk and risk aversion may matter more for

driving the commonality in the longer-horizon international equity premiums. The global equity

risk compensation exhibits countercyclical dynamics and a downward-sloping term structure,

particularly during economic downturns, adding to recent discussions for the US equity market

(see, e.g., Boguth, Carlson, Fisher, and Simutin (2011), Van Binsbergen, Brandt, and Koijen

(2012), Van Binsbergen, Hueskes, Koijen, and Vrugt (2013), Croce, Lettau, and Ludvigson

(2015)).

Finally, we complement our global-level inference by examining, through the lens of our

framework, how global investors demand different global risk compensations for holding assets

in countries with different integration levels. We find that, for countries with higher integration

(especially financial integration), global investors demand lower global macro risk compensation
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but higher global pure financial risk compensation. The former result is potentially consistent

with the international risk sharing intuition given a lower cost of capital, greater firm and

fundamental investment opportunities, and higher potential growth (Bekaert and Harvey (2003);

Carrieri, Errunza, and Hogan (2007)); the latter result is likely due to the increasing chance of

higher systemic risk exposure that cannot be diversified away.

Our research contributes to several strands of the literature:

First, our exploration of the global determinants of international equity risk premiums

contributes to the ongoing discussion of how global shocks matter and transmit across interna-

tional equity markets (see, e.g., Colacito, Croce, Gavazzoni, and Ready (2018); Bonciani and

Ricci (2020); Bekaert, Hoerova, and Xu (2020); Avdjiev, Gambacorta, Goldberg, and Schiaffi

(2020); Aldasoro, Avdjiev, Borio, and Disyatat (2020); Xu (2019) and many others). Different

from existing research, our framework exploits empirical evidence from international stock re-

turn predictability, which allows us to look at global risk compensations using cross-sectional

information at various horizons.

Our research contributes to the literature on understanding and estimating the dynamics

of equity risk premiums, including a voluminous empirical literature on time-series predictability

regressions; a literature on asset pricing models, as in Martin (2017) and Bekaert, Engstrom, and

Xu (forthcoming); and surveys, as in Graham and Harvey (2005). We exploit several approaches

combining empirical evidence from stock return predictability with model implications from an

asset pricing framework. Our model estimation strategy, which constitutes one of our core

contributions of this paper, highlights two innovations. First, in an asset pricing framework,

both US VP and international equity risk premiums should be driven by common risk premium

state variables. Empirically, we observe their covariance relationship (i.e., predictability results)

and the dynamics of the VP components. By predetermining the loadings of the VP components

on these premium state variables, the loadings of international equity premiums hence become

the only unknowns in the estimation. Second, considering multiple predictors and multiple

countries in a unified framework provides more information in the estimation.

Considering the US VP and its asymmetric components as our main global predictors

also contributes to the literature on international stock return predictability. Broadly, we add

to a branch of the literature that investigates the predictive power of US financial variables for

international stock returns (see Rapach, Strauss, and Zhou (2013) and papers cited therein).

More specifically, we add to the literature documenting the robust predictability of the US
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VP for international stock returns (Londono (2015) and Bollerslev, Marrone, Xu, and Zhou

(2014)).1 A more recent strand of the VP predictability literature finds that compensations for

bearing stock return variations associated with good and bad states are potentially different

and that acknowledging for asymmetry in the variance risk premium significantly increases its

stock return predictability. This literature has focused only on the predictability for US stock

returns (Kilic and Shaliastovich (2019) and Feunou, Jahan-Parvar, and Okou (2017)). Given

our goal to improve our understanding of global equity risk compensations through predictive

coefficients, we contribute to this strand of the literature by showing that decomposing the US

variance risk premium into its downside and upside components also yields higher predictability

for international stock returns.

Finally, while we are agnostic about the exact global transmission channels (e.g., cen-

tral banks, firms, households) of risk premium state variables, our cross-country calibration

suggests that US/global investors may demand more (less) financial market risk compensation

(macroeconomic risk compensation) from countries with higher integration, shedding light on

the non-trivial asset pricing implications of globalization (see, e.g., Kose, Prasad, Rogoff, and

Wei (2009); Rapach, Strauss, and Zhou (2013); and Bekaert, Harvey, Kiguel, and Wang (2016)).

The remainder of the paper is organized as follows. Section 2 provides the empirical

evidence to be used in our main estimation: the dynamics and international stock return pre-

dictability of US downside and upside variance risk premium. Section 3 proposes a conceptual

framework to formally motivate our core estimation strategy, that international stock return

predictability should be determined by primitive common economic determinants that drive

both US VPs and international equity risk premiums. Bringing the model solution to the

empirical evidence, Section 4 presents the estimation results for common risk premium deter-

minants, and Section 5 discusses the relative importance of these economic determinants in

international equity risk premiums. Concluding remarks are included in Section 6.

2. Empirical Evidence

In this section, we explore the commonality in short-term international equity risk premi-

ums by examining the predictive power of the US variance risk premium (VP) and its downside

and upside components for international stock excess returns for horizons between one and

1Several papers have documented the robust domestic predictability of the US VP (e.g., Bollerslev, Tauchen,
and Zhou (2009), Drechsler and Yaron (2010), Bekaert and Hoerova (2014); see Zhou (2018) for a detailed review).
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twelve months. In the first part of the section, we construct and discuss the dynamic properties

of the downside and upside components of the US VP; then, we examine their predictive power

for international stock excess returns, followed by robustness checks.

2.1. Definitions

We follow the notation in Bollerslev, Tauchen, and Zhou (2009) and define the total

one-month-ahead VP as the difference between the risk-neutral (Q) and the physical (P ) ex-

pectations of the total variance of one-month-ahead stock returns,

V Pt,t+1 = V Q
t (rt+1)− V P

t (rt+1), (1)

where rt+1 denotes the log stock return between months t and t + 1. We decompose VP

into its downside and upside components, which we label DVP and UVP, respectively. These

components allow us to disentangle the compensations for bearing downside and upside variance

risks. The general expression for this decomposition is as follows:

V Pt,t+1 = V Q
t (rt+11<0)− V P

t (rt+11<0)︸ ︷︷ ︸
DV P

+V Q
t (rt+11>0)− V P

t (rt+11>0)︸ ︷︷ ︸
UV P

, (2)

where 1<0 (1>0) is a dummy equal to 1 when the one-month-ahead return is below (above) 0

(see Feunou, Jahan-Parvar, and Okou (2017); Kilic and Shaliastovich (2019); Baele, Driessen,

Ebert, Londono, and Spalt (2019); and Held, Kapraun, Omachel, and Thimme (2020)).

We estimate the risk-neutral and physical components of DVP and UVP separately. The

risk-neutral components of DVP and UVP are extracted from option prices using what is usually

known as the model-free methodology (see Britten-Jones and Neuberger (2000); Andersen and

Bondarenko (2009)). Specifically, we approximate the risk-neutral components of DVP and

UVP using the option-implied downside and upside variances, respectively, as follows:

ivDt,t+1 =

(∫ St

0

2(1 + log(St/K)

K2
P (t+ 1,K)dK

)2

, (3)

ivUt,t+1 =

(∫ ∞
St

2(1− log(K/St)

K2
C(t+ 1,K)dK

)2

,

where St is the current stock index price and P (K) (C(K)) is the price of a put (call) with

strike K and a one-month maturity. Intuitively, the option-implied downside (upside) variance

is identified by put (call) options that pay off when the return realization is negative (positive).

Next, we approximate the physical components of DVP and UVP using the expected values of

one-month-ahead downside and upside realized variances, respectively. Intuitively, we separate
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the return variability due to intradaily negative and positive price movements, and the realized

semivariances are obtained as follows:

rvDt+1 =
N∑
τ=1

r2τ1rτ<0, (4)

rvUt+1 =
N∑
τ=1

r2τ1rτ>0,

where rτ represents the instantaneous return calculated using stock prices sampled at intradaily

frequencies between months t and t + 1 and N is the total number of high-frequency return

observations within the month. The physical expectations of downside and upside realized

variances are obtained using linear projections, as follows:

Et(rv
i
t+1) = α̂i + γ̂iXi

t , (5)

where i = D or U for downside and upside, respectively, and Xi
t is a chosen set of predictors

observable at time t. We allow Xi
t to be different in predicting downside and upside realized

variances. Therefore, DVP and UVP are obtained, respectively, as follows:

vpDt,t+1 = ivDt,t+1 − Et(rvDt+1), (6)

vpUt,t+1 = ivUt,t+1 − Et(rvUt+1).

2.2. The dynamics of variance risk premiums

We use daily prices for options on the S&P 500 index at different strikes and maturities

(source: OptionMetrics) to obtain the risk-neutral components of DVP and UVP, and we use

intradaily prices sampled every 15 minutes for this stock index (source: TICKDATA) to obtain

the realized semivariances. Our sample period runs between April 1991 and December 2019.

Figure 1 shows the time variation in the option-implied total variance (top) and its down-

side and upside components (bottom). The dynamics of option-implied variances confirm the

statistics reported in Kilic and Shaliastovich (2019). The downside implied variance accounts

for a larger fraction of the total implied variance than the upside component for almost all

months in our sample; the average downside to total implied variance ratio is 68.3%. The total

implied variance is highly correlated with its components (0.99 and 0.97 with the downside

and upside component, respectively). All three time series spike around crisis periods in our

sample, including the Long-Term Capital Management (LTCM) fund crisis in the late 1990s,

the corporate scandals in the early 2000s, the collapse of Lehman Brothers during the global
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financial crisis, and the European debt crisis in the late 2011.

Next, we measure the physical expectations of return semivariances. While the litera-

ture has proposed and compared various models for predicting the total realized variance (see

Bekaert and Hoerova (2014) for a thorough discussion), there is limited research on predict-

ing the downside and upside realized variances. Table 1 explores five forecast specifications of

one-month-ahead realized semivariances at the daily frequency using the regression framework

in Equation (5). The specification in measure (1) assumes that realized semivariances follow a

Martingale process, as in Kilic and Shaliastovich (2019); that is, Et(rv
i
t+1) = rvit. From columns

(2) to (5), we consider various combinations of predictors including past realized variance and

semivariances calculated at various horizons. Simple AR(1) forecasts of downside and upside

realized variances (measure (2)) yield considerable improvements in terms of adjusted R2s with

respect to the Martingale specification. Including the total variance to the simple AR(1) spec-

ification, as seen in column (3), does not significantly improve the adjusted R2s. According to

column (4), a heterogeneous autoregressive (HAR) framework using the past monthly (rvit−1m,t),

weekly (rvit−5d,t), and daily (rvit−1d,t) realized semivariances significantly improves the goodness

of fit for both downside and upside realized variances.2

In column (5), we include downside and upside option-implied variances and evaluate

their predictive performance for downside and upside realized semivariances, respectively. This

last specification yields the best predictive performance for both downside and upside realized

semivariances.3 Therefore, we use measure (5) to estimate the downside and upside expected

physical variances. With the risk-neutral and physical expected variance estimates, we obtain

DVP and UVP as in Equation (6). The sum of the two VP components yields the total VP.

In the remainder of the paper, we use the end-of-month estimates as our benchmark DVP and

UVP measures.

We find that our benchmark monthly DVP and UVP measures differ in their unconditional

and time-series properties. First, as can be seen from the summary statistics in Table 2, the

2This HAR framework for realized semivariances extends Corsi (2009), who focuses on forecasting the total
realized variance. Feunou, Jahan-Parvar, and Okou (2017) also consider the HAR framework to approximate the
expectations of downside and upside realized variances. However, they do not report the coefficients associated
with the HAR components or the fit of the model, and they conclude that the results for the HAR specification
are qualitatively similar to those for the Martingale specification.

3We are able to replicate and confirm the main result in Bekaert and Hoerova (2014) using our daily data:
that is, option-implied variance contains information about future total realized variance, and, therefore, the best
forecast specification uses both past realized variances (as in the original Corsi model) and implied variance as
predictors. However, neither Corsi (2009) nor Bekaert and Hoerova (2014) forecast downside and upside realized
variances as we do here. Additional evidence on our total realized variance forecast results is shown in Table A1
of Appendix A.
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option-implied downside variance is on average higher than the expected downside realized

variance, yielding a positive DVP with an average of 15.97 squared percent in our chosen

model (column (5)). The positive nature of DVP holds for all other measures considered and

is consistent with the evidence in the existing literature. DVP is prone to large positive. For

instance, our DVP measure reaches a value of 93.05 squared percent during the peak of the

2007-08 financial crisis, as shown in Figure 2. The option-implied upside variance is found to

be, on average, higher than the expected upside realized variance; the average UVP (1.26) is

significantly different from zero but is significantly smaller than the average DVP (15.97). As

shown in Figure 2, UVP displays negative spikes in a few episodes. For instance, UVP reached

-35.48 squared percent during the Lehman Brothers aftermath, which is almost 11 standard

deviations away from its historical average.4,5

Second, we find that the total VP comoves closer to DVP than to UVP. Panel C of Table

2 shows that the correlation between VP and DVP using our chosen model is 0.97, while that

between UVP and VP is 0.26. Moreover, our DVP and UVP measures are statistically uncorre-

lated, which stands in contrast to the high correlation between UVP and DVP documented by

Kilic and Shaliastovich (2019) using the Martingale measure. Table A2 in the Appendix shows

that both DVP and UVP are highly correlated across measures, with a correlation coefficient

ranging from 0.74 to 0.99 for DVP and from 0.74 to 0.95 for UVP.

Third, DVP exhibits a negative correlation with monthly US industrial production growth

(ρ=-0.29), rendering a countercyclical DVP; in contrast, UVP is positively correlated with the

growth rate (ρ=0.17), suggesting weakly procyclical dynamics. Both correlations are statisti-

cally significant at the 1% confidence level.

Finally, UVP is more transitory than DVP. At the monthly frequency, the AR(1) coeffi-

4Kilic and Shaliastovich (2019) define VP as the difference between the current realized variance and the
risk-neutral expectations of the variance, whereas we define VP as risk-neutral minus physical expectation. Both
DVP and UVP measures in Kilic and Shaliastovich (2019) (see their Figure 3) exhibit major negative spikes
(given our definition of VP) during this crisis period, with the negative spikes in UVP much more pronounced.
This phenomenon is likely due to the Martingale assumption when obtaining the physical expectation; that is,
according to Bekaert and Hoerova (2014), realized variance is likely to be high during economic turmoil, which
however does not necessarily mean that the actual expectation of stock market variance continues to be this high
in the near future. Figure A1 of Appendix A compares our replication of Kilic and Shaliastovich (2019) (dashed
red lines) and our measures (solid blue lines); our DVP does not show negative spikes, and our UVP shows much
milder negative spikes.

5Held, Kapraun, Omachel, and Thimme (2020) extend the calculation for the variance premium and its
components to 8 international markets and their evidence is similar to ours for US VPs; similar to Kilic and
Shaliastovich (2019), they define VP as the difference between the physical and the risk-neutral expectation of
the variance. In particular, they find that DVP is, on average, consistently positive for all markets and much
larger in magnitude than UVP. UVP is, on average positive for the US, but turns negative for 4 countries in their
sample.
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cient of our DVP measure is 0.80, whereas that of our UVP measure is only 0.22. These four

empirical facts are robust across alternative measures. Taken together, our findings suggest that

investors, in general, demand much higher compensations for downside shock exposures than for

upside shock exposures, although both shocks lead to increases in total variance. On average,

investors dislike risks emanating from both tails. However, compensations demanded for bear-

ing downside and upside variance risks have different dynamics, in terms of their persistence

and their relation with current economic conditions.

2.3. International stock return predictability

We now examine the international stock return predictability patterns of US DVP and

UVP at the global level and at the country level. We take the perspective of a global investor

whose asset values are denominated in US dollars. We consider US dollar excess returns of

22 countries’ headline stock market indexes covering North America, Asia, and Europe. Log

market returns are obtained from their total return indices (source: DataStream), and the risk

free rate uses the zero-coupon yield of US Treasury bonds (source: FRED). As before, our

sample runs from April 1991 to December 2019 (T = 345 months).

The main predictability regression is as follows:

κ−1ri,t,t+κ = aκ + ai,κ + bDκ vp
D
t,t+1 + bUκ vp

U
t,t+1 + εi,t+κ, (7)

where t denotes the month; ri,t,t+κ denotes the κ-month-ahead log excess returns for country i;

and vpDt,t+1 and vpUt,t+1 denote DVP and UVP estimates, respectively, as constructed in Section

2.2. A useful null regression specification imposes the predictive coefficients for DVP and UVP

to be the same, which is equivalent to considering the total VP as the sole predictor.6

Table 3 compares the results of the null and the main predictability regressions at the 1-,

3-, 6-, and 12-month horizons; the full-horizon predictability patterns are shown in Figure 3. Our

results for the null model are consistent with those in the literature (see, e.g., Londono (2015);

and Bollerslev, Marrone, Xu, and Zhou (2014)). In particular, the hump-shaped predictability

pattern of the total VP peaks at around the 6-month horizon.

Our main empirical result is that acknowledging for asymmetry in VP improves the pre-

dictability for international stock returns and, therefore, offers more joint information in un-

derstanding the latent behaviors of global equity risk premiums. The adjusted R-squareds of

6The panel-data setting in Equation (7) is interpreted as our global and average-country result. Moreover,
Ang and Bekaert (2007) find that a panel-data setting yields more reliable estimates for international stock return
predictability.
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our main bivariate specification are larger than those of the null model for all within-one-year

horizons considered. In addition, the predictability patterns of DVP and UVP are completely

different. While DVP inherits the hump-shaped predictability pattern of the total VP, UVP is

only a significant predictor at very-short horizons. The variance decomposition (row “VARC%”

in Table 3) confirms that the DVP contribution to predictability becomes dominant as the

horizon increases, while the UVP contribution dominates mostly at horizons between one and

three months. Our results thus suggest that decomposing US VP into its downside and up-

side components might introduce more flexibility in capturing mixed underlying dynamics of

international equity risk premiums at different horizons.

We conduct and evaluate two robustness tests of our main results. First, we estimate

the predictive regression in Equation (7) using the Martingale VP measures (see measure (1)

in Tables 1 and 2 and Figure A1 in Appendix A). The results in panel A of Table 4 suggest

that acknowledging for asymmetry in US VP using this Martingale measure still improves

international stock return predictability, given the larger adjusted R-squareds. Moreover, the

predictability patterns for DVP and UVP using the Martingale measure are similar to those in

Figure 3, with some small but notable differences. In particular, for this alternative (Martingale)

measure, the coefficient associated with UVP becomes marginally significant for the one-month

horizon and negative and significant for horizons around one year.7 Second, to assess whether the

predictive power of DVP and UVP is additional to that of some well-established macrofinance

stock return predictors, we examine an augmented version of the specifications in Equation (7)

in which we consider our VP measures and control for the three-month US Treasury bill rate

and the US earnings yield (see Ang and Bekaert (2007), Rapach, Strauss, and Zhou (2013),

Bollerslev, Marrone, Xu, and Zhou (2014)). These results are shown in panel B of Table 4.

The predictability patterns remain almost unchanged with respect to our main results; DVP

remains the main predictor of international stock returns at horizons around 6 months, while

UVP remains the main predictor at shorter horizons. DVP and UVP together explain most of

the predictive power at short horizons, according to the variance decomposition.

Next, we explore the predictability of DVP and UVP for stock returns at the country

7The predictability pattern of the Martingale UVP for international stock returns is similar to that documented
by Kilic and Shaliastovich (2019) for US stock returns (negative and borderline significant coefficients associated
with UVP at longer horizons), although we still obtain a positive and significant coefficient associated with UVP
at the one-month horizon. In fact, using the Martingale measure and a shorter sample running from January
1996 to August 2014, we are able to replicate the results in Kilic and Shaliastovich (2019) for the predictive
power of the VP components for US stock returns. Our results might suggest that the predictive power of UVP
is more sensitive to the VP measure and the sample considered.
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level. Figures 4 and 5 show the predictive coefficient estimates associated with DVP and UVP,

respectively, in the following country-level regression setting:

κ−1ri,t,t+κ = ai,κ + bDi,κvp
D
t,t+1 + bUi,κvp

U
t,t+1 + εi,t+κ. (8)

Consistent with the panel evidence, Figure 4 shows similar hump-shaped predictability pat-

tern with significant and positive predictive DVP coefficients for horizons around 6 months for

almost all countries in our sample, with a few exceptions, such as Finland, the Netherlands,

Ireland, Portugal, and Switzerland. Figure 5 shows that the predictive coefficients of UVP for

most countries (except for Japan) exhibit a similar consistently positive but decreasing pattern.

Although the shape of the predictability patterns of DVP and UVP is by large consistent across

countries, the magnitude and significance of the estimates of the coefficients associated with

DVP and UVP could vary across countries.8

In summary, we find that US DVP and UVP display different dynamics and are useful

predictors of international stock excess returns, especially for horizons between one and seven

months. When investors demand more compensations for bearing US downside (upside) vari-

ance risks, they bid down the prices of international risky assets and, moreover, demand high

equity risk premiums at 4- to 7-month (1- to 3-month) horizons. This result suggests that US

downside risks are priced as more persistent risk premium shocks to international stock markets

than US upside risks. We also show that there are gains in acknowledging for asymmetric risk

compensations in the return predictive regressions, driven mostly by UVP at very short horizons

and by DVP at mid-term horizons. Finally, there is some degree of cross-country variation in

the predictability patterns and significance of US DVP and UVP.

3. Conceptual Framework

In this section, we propose a conceptual framework to understand the international stock

return predictability of US VPs documented in Section 2. The main intuition is that the

observed international stock return predictability should be driven by common economic deter-

minants of US VPs and international equity risk premiums (EPs). An asset pricing framework

can help us motivate these common economic determinants and, when confronted with the data,

8For instance, while the DVP coefficients are small (often negative and insignificant) for Finland, Ireland,
Japan, and Switzerland, for several countries in our sample, such as Australia, Canada, Hong Kong, and Sin-
gapore, estimated coefficients are larger than those for the US (domestic predictability). For UVP, estimated
coefficients are small and not statistically significant for any of the horizons considered for several countries in
our sample: Hong Kong, Japan, the Netherlands, New Zealand, Portugal, and Singapore.
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infer their relative importance in driving global equity risk compensations, which is the main

contribution of this paper.

Our conceptual framework consists of a characterization of the state evolution and a pric-

ing kernel for a US/global representative agent. The US state evolution process is characterized

by kernel state variables, second moment state variables, and a pure cash flow state variable

(dividend growth). The dynamic state process, Yt, follows a vector autoregressive nature, and

the shocks, ωt, are mutually-independent centered gamma shocks that introduce heteroskedas-

ticity and non-Gaussianity in this affine state variable system:

Yt+1 = µ+AYt + Σωt+1, (9)

ωt+1 ∼ Γ(ΩYt + e, 1) − (ΩYt + e),

where µ, A, Σ, Ω and e are constant matrices, and ΩYt + e denotes a vector of shape param-

eters which spans second (and higher-order) moments of these shocks. There is an increasing

interest in using non-Gaussian and/or composite shocks in asset pricing models to realistically

capture the second and higher-order moments as well as tail behaviors of the underlying funda-

mental or non-fundamental state variables (see, e.g., Eraker and Shaliastovich (2008), Bekaert,

Engstrom, and Xing (2009), Fulop, Li, and Yu (2015), Segal, Shaliastovich, and Yaron (2015),

De Groot (2015), Colacito, Ghysels, Meng, and Siwasarit (2016) among many others). We are

not the first to model state variable processes in an equilibrium model with gamma-distributed

shocks; both Bekaert and Engstrom (2017) and Xu (2021) show that specifying economic funda-

mental innovations using one or multiple gamma shocks is statistically and economically more

realistic than using Gaussian shocks.9 And, of course, empirically, there may be more interesting

patterns in fundamental variable volatilities and volatility comovements (e.g., Patton and Shep-

pard (2015)). However, further empirical assumptions may make an equilibrium pricing context

fairly intractable. For the purpose of our research, we use the parsimonious gamma distribution

for our shocks that (as we prove in the Appendix) result in quasi-closed-form expressions for

US and international equity prices, variance risk premiums, and equity risk premiums. This

greatly increases the appeal of the framework, as we can obtain useful intuition on the drivers

of asset prices.

9In addition, Bekaert, Engstrom, and Ermolov (2015) conduct a more thorough model comparison and find
that specifying S&P 500 market returns using gamma-class innovations with AR(1) shape parameters driven by
level shocks dominate 8 other non-Gaussian or asymmetric GARCH-class and regime-switching models.
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Next, we assume a general linear process of the log US real pricing kernel, as follows:

mt+1 = m0 +m1Yt +m2Σωt+1, (10)

where m1 and m2 denote the loadings on the lagged state variables and innovations, respec-

tively. Given the no-arbitrage condition and the conditional asset pricing framework, the US

price-dividend ratio can be solved in an approximate affine framework, and the log US market

return can be expressed in the following quasi-linear process (see Appendix B for the proof):

rt+1 = ln

(
Pt+1 +Dt+1

Pt

)
≈ ξ0 + ξ1Yt + ξ2Σωt+1. (11)

We next assume that, for countries other than the US, there is a country-level dividend growth

process that is sensitive to US macro and business conditions, Yt, and shocks, ωt+1. Thus, as

shown in Appendix B, log stock returns for country i can be written as:

rit+1 = ln

(
P it+1 +Di

t+1

P it

)
≈ ξi0 + ξi1Yt + ξi2Σωt+1 + Idiosyncratic Parts. (12)

Constant matrices ξ1 (ξi1) and ξ2 (ξi2) represent the loadings of US (country i) log returns on

the lagged US/global state variables and shocks, respectively.

The model-implied US variance risk premium has the following expression (see Ap-

pendix C for the proof):

V Q
t (rt+1)− V P

t (rt+1) =
{

(ξ2Σ)◦2 ◦
[
(1−m2Σ)◦−2 − 1

]}
(ΩYt + e) , (13)

where “◦” denotes element-by-element matrix multiplication. Here are some economic insights

from Equation (13). First, the dynamics of VP (and its components) should be driven by the

shape parameters of kernel state variable shocks, as, for these shocks, the pricing kernel has

non-zero loadings (that is, m2 6= 0). Second, for shocks with positive m2 loadings, their shape

parameters (as captured in (ΩYt + e)) contribute positively to VP, given

[(
1

1−m2σ

)2
− 1

]
> 0.

Intuitively, for instance, in a standard habit formation model, the marginal utility increases with

the relative risk aversion shock; in Segal, Shaliastovich, and Yaron (2015)’s long-run risk model,

the kernel has positive exposure to a bad macroeconomic shock. Hence, our closed-form solution

in Equation (13) would suggest that the variance risk premium may increase with investor risk

aversion and bad macroeconomic uncertainty.10

10Note that it is not trivial to derive model-implied VP components that are consistent with definitions of
downside and upside environments (negative and positive return realizations, respectively) because returns are
endogenously determined, as shown in Equation (11). Therefore, our approach to determine the drivers of
downside and upside VPs is entirely empirical, with minimum model assumptions; we relegate this discussion to
Section 5.
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Next, the US equity risk premium is given by:

Et(rt+1)− rft = {ξ2Σ + ln [1− (m2 + ξ2)Σ]− ln(1−m2Σ)} (ΩYt + e), (14)

which is determined by second moments of shocks that commonly drive the pricing kernel and

asset returns. Similarly, these second moments also determine the global compensation part of

country i’s equity risk premium:

Et(r
i
t+1)− rf it =

{
ξi2Σ + ln

[
1− (m2 + ξi2)Σ

]
− ln(1−m2Σ)

}
(ΩYt + e) (15)

+ Idiosyncratic Parts.

The Gaussian approximation of Equation (14) is− (m2Σ ◦ ξ2Σ) (ΩYt + e), or−Covt(rt+1,mt+1);

similarly, for other countries, the global part of Equation (15) captures −Covt(rit+1,mt+1). Ap-

pendix D provides more details.

In summary, our conceptual framework suggests two important implications for our re-

search objective. First, both the dynamics of US VP and the global part of international equity

risk premiums should be driven by the second moments of kernel shocks that enter asset returns,

which we refer to as “common risk premium determinants” in the rest of the paper. Second,

this commonality implies various stock return predictability channels, which together attribute

to the observed international predictive coefficients. Given the empirical focus of the paper,

our estimation strategy starts with defining and estimating plausible common risk premium

determinants in Section 4. In Section 5, we bring the model implications to the international

stock return predictability evidence and infer the composition and dynamics of the global equity

risk premium.

4. Common Risk Premium Determinants

As discussed in the Introduction, we motivate our choices of kernel state variables and

shocks from both consumption-based and intermediary asset pricing branches of the literature.

We focus on the following three main kernel state variables: real economic growth, denoted by

θt+1; risk aversion, qt+1; and stock market illiquidity, illiqt+1. These state variables determine

the kernel shocks in our framework (see Appendix E for explicit expressions):

Σmωm,t+1 ≡


θt+1 − Et(θt+1)

qt+1 − Et(qt+1)

illiqt+1 − Et(illiqt+1)

 , (16)
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where we assume that,

Σm =


δθ,θp −δθ,θn 0 0 0 0

δq,θp δq,θn δq,qh −δq,ql 0 0

δilliq,θp δilliq,θn δilliq,qh δilliq,ql δilliq,illiqh −δilliq,illiql

 ,

ωm,t+1 =

[
ωθp,t+1 ωθn,t+1 ωqh,t+1 ωql,t+1 ωilliqh,t+1 ωilliql,t+1

]′
.

We allow flexible tail behaviors of the three main state variables, given that their second (and

higher) moments constitute the common risk premium determinants. Specifically, ωθp,t+1 ∼

Γ(θpt, 1) − θpt and ωθn,t+1 ∼ Γ(θnt, 1) − θnt denote the good and bad macro shocks with

time-varying shape parameters θpt and θnt, respectively, that characterize the right and left

tail behaviors of the real economic growth. Similarly, ωqh,t+1 ∼ Γ(qht, 1) − qht and ωql,t+1 ∼

Γ(ql, 1)− ql denote the high and low pure risk aversion shocks, and ωilliqh,t+1 ∼ Γ(illiqht, 1)−

illiqht and ωilliql,t+1 ∼ Γ(illiqlt, 1) − illiqlt denote the high and low pure illiquidity shocks.

The six shocks are mutually independent and follow centered gamma distributions with time-

varying shape parameters, except that, for simplicity, we characterize the low risk aversion

fluctuation as homoskedastic (i.e., ql).11 Given the moment generating function of gamma

shocks, the shape parameters govern the second and higher-order moments of these shocks.12

On their dynamic processes, we assume simple AR(1) processes for these shape parameters:

∀x ∈
[
θp θn qh illiqh illiql

]
,

xt+1 = µx + ρxxt + σxωx,t+1. (17)

Importantly, the dynamic framework above assumes non-zero correlations between level

and second (or higher-order) moment shocks, which is likely to be realistic for the three funda-

mental processes of interest. For instance, consistent with Adrian, Boyarchenko, and Giannone

(2019) and Bekaert and Popov (2019), when growth spurts are observed this period (a large

ωθp,t realization), we might expect a higher chance for future growth spurts (a higher θpt from

the equation above, assuming σθp > 0). Also, consistent with Colacito, Ghysels, Meng, and

Siwasarit (2016), time-varying growth skewness – which is effectively captured by the time-

varying shape parameters of growth gamma shocks – is a potentially important determinant

of equity risk premiums. Moreover, the conditional variance of the relative risk aversion state

11This assumption is to capture the possibility that most of the heteroskedasticity in investor risk aversion is
driven by high risk aversion events.

12For instance, the conditional variance and (unscaled) skewness of the economic growth, δθ,θpθpt+1 −
δθ,θnθnt+1, can be derived in closed form as a function of two shape parameters; for instance, V art(θt+1) =
σ2
θ,θpθpt + σ2

θ,θnθnt, Skewt(θt+1) = 2σ3
θ,θpθpt − 2σ3

θ,θnθnt.
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variable (inverse surplus consumption ratio) in Campbell and Cochrane (1999)-type models

comoves positively with the the relative risk aversion state variable, suggesting a potentially

positive relationship between risk aversion level and volatility (see Xu (2021) for a detailed

proof). Therefore, the use of gamma shocks is suitable for our research as it efficiently sum-

marizes conditional moments with one state variable, which allows us to focus on comparing

across the different common risk premium determinants: good and bad macroeconomic uncer-

tainty (θpt and θnt, respectively), risk aversion (qht), and high and low stock market illiquidity

uncertainty (illiqht and illiqlt, respectively).

Finally, as illustrated in the loading matrix Σm, we allow business cycle (growth) shocks to

enter both risk aversion and stock market illiquidity dynamics. We also allow market illiquidity

to change with pure investor risk aversion shocks that are orthogonal to business cycle shocks,

given recent empirical evidence that stock market liquidity and risk aversion appear positively

associated (see e.g. ECB (2007)).

4.1. Data and estimation

We follow the empirical macro literature (e.g., Jurado, Ludvigson, and Ng (2015)) and

use the change in the log US industrial production as the empirical proxy for economic growth

θt. Our data runs from January 1947 to December 2019 and is obtained from FRED. We use

Bates (2006)’s approximate MLE methodology to estimate non-Gaussian fundamental shocks

(ωθp,t, ωθn,t) and uncertainty state variables (θpt, θnt). Then, we filter our risk aversion state

variable and shocks from the risk aversion state variable (qt) estimated in Bekaert, Engstrom,

and Xu (forthcoming). Although measuring market-wide risk aversion is an ongoing debate,

the Bekaert, Engstrom, and Xu (forthcoming) measure is potentially more suitable for our

framework, given that it is filtered from a wide range of financial and risk variables while

being consistent with a HARA utility assumption and equilibrium conditions and controlling

for fundamental variable dynamics.13 Moreover, Bekaert, Engstrom, and Xu (forthcoming)’s

measure is available at the monthly frequency. The longest available sample for risk aversion

13In contrast, Campbell and Cochrane (1999)’s risk aversion would not be suitable for our framework, as the
measure is purely driven by past quarterly consumption growth (Wachter (2006)), which is still a fundamental
variable. Miranda-Agrippino and Rey (2020) also provide a risk aversion measure, which is the residual of
regressing their Global Financial Cycle series on current MSCI world realized return variance. Their measure
is available at a higher frequency but is not suitable for our research because we mostly focus on US predictors
(for the purposes of interpretation and construction consistency across predictors), while their measure is mostly
interpreted as a global risk aversion proxy (using 858 price series from all geographical areas). Nevertheless, the
Bekaert-Engstrom-Xu and the Miranda-Agrippino-Rey risk aversion measures are correlated at 0.7, which is not
surprising given that the US has the largest market capitalization.
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starts in June of 1986. Finally, we follow Amihud (2002) to construct the stock market illiquidity

measure (illiqt) using asset returns and volume data of the largest 500 stocks each month from

the CRSP NYSE/AMEX/NASDAQ universe, and then filter our illiquidity state variables and

shocks from January 1985 to December 2019.

4.2. Results

Table 5 shows standard summary statistics of the five time-varying risk premium deter-

minants and Figure 6 shows their estimated dynamics during our sample. Detailed parameter

estimates and long-sample time series plots are deferred to Appendix E. We now discuss sev-

eral key observations about our five common risk premium determinants. First, given that a

lower shape parameter indicates a more skewed gamma distribution, evidence from Table 5

implies that there is a higher chance of extreme values from the left tail of the real growth rate

than from its right tail; moreover, θpt (θnt) is procyclical (countercyclical) given the significant

negative (positive) correlation with the NBER recession indicator. According to the first two

plots of Figure 6, both good and bad uncertainty state variables are quite persistent. While

θpt comoves mostly with the cyclical ups and downs, θnt captures excessively bad uncertainty

events to industrial production, such as the impacts of Hurricane Katrina (September of 2005),

the collapse of Lehman Brothers (October of 2008), and the US-China trade war (summer of

2018). The bad uncertainty contributes 67% (more during recessions) to the total conditional

variance of economic growth.14

Second, the risk aversion state variable qht captures the variability in the pure risk aversion

shock that is cleansed from macroeconomic shocks. The estimated qht process is strictly coun-

tercyclical and positively skewed, exhibiting moderate monthly persistence (0.57; Appendix E).

The time series plot shows that risk aversion variability could also significantly spike in non-

recession episodes such as the Russian & LTCM crisis, 9/11, and several corporate scandals

during 2000s. To explain the total risk aversion variability,15 we find that macroeconomic

shocks account for about 15%.

Third, Amihud (2002)’s illiquidity measure is typically found to be quite persistent; dur-

ing our sample period, we document a persistent coefficient of 0.95. Table 5 shows that the

high stock market illiquidity uncertainty, illiqht, is weakly countercyclical, while the expected

14The total conditional variance of economic growth is, V art(θt+1) = δ2θ,θpθpt + δ2θ,θnθnt.
15The total conditional variance of risk aversion is, V art(qt+1) = δ2q,θpθpt + δ2q,θnθnt + δ2q,qhqht + δ2q,qlql.
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liquidity shock fluctuation, illiqlt, is acyclical, suggesting that these two state variables may be

capturing a financial cycle that is orthogonal to the business cycle. From Figure 6, illiqlt ap-

pears more stable than illiqht, capturing an asymmetry that is consistent with Amihud (2019).

Finally, we find that 73% of the total stock market illiquidity variability is explained by illiq-

uidity uncertainties (mostly illiqht) and 26% by risk aversion, rendering a weak macroeconomic

effect through stock market illiquidity state variables.16

5. Economic Interpretations

In this section, we study potential economic interpretations of the dynamics and inter-

national predictability of DVP and UVP, which helps us understand the economic sources of

the commonality in international equity risk premiums. Section 5.1 describes our estimation

strategy; Section 5.2 provides evidence of model fit; and Section 5.3 presents the results.

5.1. Estimation strategy

5.1.1. Loadings of US VP components on common risk premium determinants

While our conceptual framework does not imply specific dynamics of DVP and UVP, we

estimate separate loadings of DVP and UVP on the common risk premium state variables by

jointly matching moments of empirical estimates of DVP and UVP in a GMM system.17 In

addition, given the empirical focus of the paper, we consider both constant and time-varying

loadings.18 While scant research has discussed whether VP exhibits constant or time-varying

loadings on its economic determinants, there is strong empirical evidence of time-varying stock

return sensitivities on economic shocks (see e.g. Andersen, Bollerslev, Diebold, and Wu (2006),

Baele, Bekaert, and Inghelbrecht (2010)), and our parsimonious framework demonstrates that

return sensitivities are non-linearly connected to VP dynamics (ξ2 in Equation (13)).

16The total conditional variance of market illiquidity is, V art(illiqt+1) = δ2illiq,θpθpt+δ
2
illiq,θnθnt+δ

2
illiq,qhqht+

δ2illiq,qlql + δ2illiq,illiqhilliqht + δ2illiq,illiqlilliqqlt.
17Granted, it is quite natural for one to consider using simple OLS projections to obtain these separate loadings.

However, OLS regressions allow for residuals and do not guarantee dynamic moment matching; in addition, OLS
regressions suffer from co-linearity given that, by design, our risk premium state variables comove with each
other (e.g., risk aversion loads on growth shocks; see details in Section 4 and Appendix E). Both concerns can
be jointly resolved using a GMM framework, which makes it appealing.

18Although constant loadings are not necessarily realistic, time-varying loadings cannot be straightforwardly
implied from a standard no-arbitrage asset pricing framework. The reason is that such a model would involve
recursively solving the moment generating functions of product of shocks, which does not always easily guarantee
an exponential affine solution.
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Specifically, we compute the DVP and UVP candidates, denoted by v̂pDt and v̂pUt , respec-

tively, given the loading parameter candidates, denoted by w:

v̂pDt = vpD0 + wDθp,tθ̂pt + wDθn,tθ̂nt + wDqh,tq̂ht + wDilliqh,tîlliqht + wDilliql,tîlliqlt, (18)

v̂pUt = vpU0 + wUθp,tθ̂pt + wUθn,tθ̂nt + wUqh,tq̂ht + wUilliqh,tîlliqht + wUilliql,tîlliqlt,

where, for x ∈ {θp, θn, qh, illiqh, illiql}, x̂ indicates the estimated risk premium state variables

from Section 4, and wDx,t and wUx,t indicate the corresponding loadings, which, in the time-varying

version are linearly spanned by a common economic indicator zt:

wDx,t = wDx,0 + wDx,1zt, (19)

wUx,t = wUx,0 + wUx,1zt.

We use the squared real growth innovation as zt to reflect the general observation that the effects

of economic shocks on returns are typically intensified in an uncertain economic environment

(for reasons such as learning, David and Veronesi (2013), or arbitragers, Hong, Kubik, and

Fishman (2012)). Next, we use the empirical estimates of the VP components from Section 2

to generate orthogonality conditions: mean, variance, scaled skewness, scaled kurtosis of DVP

and UVP (8 moments), the covariance between DVP and UVP (1), and the fraction of the

DVP in total VP (1). Each raw moment condition is then tensor-multiplied with a set of lagged

instruments {1, θt−1, qt−1, illiqt−1}. The GMM system has 40 moments and 22 unknowns, and

is estimated iteratively.

5.1.2. Loadings of international EP on common risk premium determinants

Our core innovation is to exploit the cross-section of country-level predictive coefficients of

two global predictors to identify the composition and dynamics of the global equity risk premium

at within-one-year horizons. From Equations (14) and (15), one-month-ahead country equity

risk premiums have a global part that linearly spans the common risk premium state variables.

Because these common risk premium state variables follow AR(1) processes, the expectation

of κ-month-ahead excess returns, EP iκ,t, should also linearly span these state variables. As a

result, we consider the following consistent framework:

ÊP
i

κ,t = viθp,κ,tθ̂pt + viθn,κ,tθ̂nt + viqh,κ,tq̂ht + viilliqh,κ,tîlliqht + viilliql,κ,tîlliqlt (20)

+ Idiosyncratic Part,
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where, for x ∈ {θp, θn, qh, illiqh, illiql}, the country-level loadings are characterized by both

economic and financial integration levels and by current realized variance:

vix,κ,t = vx,κ,0 + vx,κ,1EconomicIntegration
i + vx,κ,2FinancialIntegration

i + vx,κ,3zt. (21)

We use the average trade-to-GDP ratio (source: World Bank) to capture a country’s economic

integration (see e.g. Alesina, Spolaore, and Wacziarg (2000)) and the average total holdings (as-

set and liability) from country i to the rest of the world (source: IMF, The Coordinated Portfolio

Investment Survey) to capture a country’s financial integration (see e.g. Schularick and Steger

(2010)).19 EconomicIntegrationi and FinancialIntegrationi are standardized measures. Ta-

ble 6 presents the country-level integration proxies (in percents) and classifies countries with

relatively high (H), medium/average (M), and low (L) integration for demonstration purposes.

The two integration proxies are moderately correlated across countries (ρ=0.48). Finally, note

that the EP loadings on common economic determinants are expected to be less time-variant

than the VP loadings given our model solution, or a weaker effect of zt.
20

Taken together, the model-implied κ-month predictive coefficients of DVP and UVP for

country i are given by:

b̂i,Dκ ≡
Cov(v̂pDt , ÊP

i
κ,t)

V ar(v̂pDt )
=

(
V ′
κΞWD

)(
WD′ΞWD

) , (22)

b̂i,Uκ ≡
Cov(v̂pUt , ÊP

i
κ,t)

V ar(v̂pUt )
=

(
V ′
κΞWU

)(
WU ′ΞWU

) ,
where Vκ is a vector matrix consisting of 20 unknown v’s from Equation (21) for each hori-

zon κ; Ξ is the covariance-variance matrix of θpt, θnt, qht, illiqht, illiqlt, θptzt, θntzt, qhtzt,

illiqhtzt, and illiqltzt; W
D and WU are vector matrices consisting of 10 estimated parameters

from Section 5.1.1; see Appendix F for their exact expressions. The estimation is conducted

by minimizing the sum of squared standardized distances between model-implied and empirical

country-level predictive coefficients (22 b̂i,Dκ ’s and 22 b̂i,Uκ ’s); the empirical estimates of inter-

national predictive coefficients of DVP and UVP are discussed in Section 2. We estimate the

system one horizon at a time (for twelve horizons) using a grid of 10,000 initial value combina-

tions.

19The data are obtained from Tables 1 and 8 from https://data.imf.org/?sk=

B981B4E3-4E58-467E-9B90-9DE0C3367363&sId=1481568994271. The first available year is 2001.
20Analytically, according to Equations (13) and (14), kernel and return sensitivities to shocks (m2’s and ξ2’s,

respectively) determine both the VP and EP loadings. A linear approximation to the VP (EP) loading is
2 (ξ2Σ)◦2 ◦m2Σ (−m2Σ ◦ ξ2Σ). Suppose kernel and return sensitivities double; it can be easily shown that
the VP loadings would increase much more than that the EP loadings. Economically, while stock and volatility
pricing may reflect similar risk factors (and hence VP exhibits predictability), VP is not the appropriate direct
proxy for EP as the underlying asset is more non-linear (by design) in VP.
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5.2. Model fit

Table 7 presents the moment matching results and test specifications of the GMM system

for the dynamics of the VP components (Section 5.1.1) with constant loadings (wDx,1 = wUx,1 = 0

in Equation (19)) or time-varying loadings. The constant-loading model is immediately rejected,

according to the Hansen’s J overidentification test statistic value and poor moment matching.

On the other hand, for the time-varying loading model, we fail to reject the null hypothesis

that the extra moments in this model are valid; moreover, all moments are significantly close

to their empirical counterparts. In particular, DVP is larger in magnitude and more volatile,

explaining an average of 92.7% of the total variance risk premium during the sample period.

Next, we evaluate the dynamic fit of DVP and UVP. Figure 7 compares the model-implied

monthly VP components with their respective empirical estimates. Our model-implied DVP

and UVP estimates from the time-varying loading model (solid lines) are highly correlated with

their empirical counterparts (dashed lines) at 0.88 and 0.48, respectively. In constrast, the

DVP and UVP estimates implied from the constant-loading model (dotted lines) show weaker

correlations with empirical estimates at 0.74 and 0.16, respectively. Given that the constant-

loading model fails the overidentification test and exhibits a weaker correlation with empirical

estimates, in the remainder of the paper, we focus on the time-varying loading model for the

VP components.

Table 8 illustrates the fit of international predictive coefficient estimates of DVP and

UVP by evaluating the fit of model-implied mean, median, and standard deviation of the 22

country predictive coefficients at each horizon. From Panel A, the model fits the level and the

cross-country dispersion of the DVP predictive coefficients quite well. Most model moments are

within the 1.96 standard deviations of the empirical counterparts. If we only consider horizons

when most countries’ DVP predictive coefficients are significant in the empirical evidence (i.e.,

horizon between two and seven months), all model moments are statistically close to their

empirical counterparts. From Panel B, the model-implied level and cross-country dispersion of

UVP predictive coefficients are statistically close to their empirical counterparts, except for the

dispersion statistics at the 3- and 4-month horizons. In general, our evidence suggests that the

integration measures, as conjectured in Equation (21), have the potential to explain the cross-

country dispersion in the predictive coefficients. This evidence is, to the best of our knowledge,

new to the literature.
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Finally, we discuss two other observations from Table 8 that are consistent with the

empirical evidence. First, both the mean and the median of country predictive coefficients for

the 22 countries are statistically close to the panel-data estimates (in Table 3) and to each other,

suggesting that there may not exist major skewness in the cross section of country predictive

coefficients. Second, there is more cross-country heterogeneity at shorter horizons, suggesting

that there may be more cross-country differences in pricing common/global shocks at the short

term than at the long term.

5.3. Economic interpretations

We now return to the empirical evidence and discuss economic interpretations of (1)

the dynamics of the VP components, (2) their stock return predictability in an “average”

country, which speaks to the global- or panel-level interpretations, and (3) their stock return

predictability in countries with low/high economic and financial integration levels, which speaks

to the country-level interpretations.

5.3.1. The dynamics of the VP components

Table 9 presents the estimation results of the parameters from Equation (18) and the

variance contribution of each premium state variable (see rows “VARC%”). From this table,

DVP loads strongly and positively on variations in “pure” risk aversion (qht) that are not

explained by the business cycle fluctuations. According to the variance decomposition results,

qht accounts for most of the explained dynamics of DVP, 62.49%, of which, 10.29% is explained

by the time-varying component of the coefficient. This evidence suggests that DVP increases

with pure risk aversion more strongly when the current market and business cycle condition

is volatile, given the significant and positive wDqh,1 estimate. The bad economic uncertainty,

θnt, captures about 30% of the explained DVP dynamics. Different from risk aversion, bad

uncertainty may exhibit slightly lower explanatory power in the DVP dynamics when the current

business condition is volatile, given the significant but negative wDθn,1 estimate. On the other

hand, the state variable capturing high-end, right-tail fluctuations in stock market illiquidity,

illiqht, appears to contribute positively to the DVP dynamics during volatile periods; the

corresponding VARC of around 9% is economically sizable.

Table 10 provides the economic magnitudes of these VP loadings at various values of

the current economic condition, which is characterized by the realized variance of economic
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growth, zt. Because zt is right skewed and is always greater than 0, we calibrate several useful

scenarios when zt equals the mean, 90th, 95th, and 99th percentile of its distribution. We

find that, under normal conditions (zt at mean), one standard deviation (SD) increase in risk

aversion is associated with the largest increase in DVP (around 9 monthly percentage squared),

while bad uncertainty shows the second largest increase (around 6), which is consistent with

the evidence in Table 9. Under more extreme economic conditions, one SD high illiquidity

uncertainty corresponds to an increase of 9.9 monthly percentage squared in DVP, which is

comparable in magnitude to the marginal impact of one SD risk aversion (11.3).

From the second parts of Tables 9 and 10, under normal conditions, good economic un-

certainty, risk aversion, and fluctuations in stock market liquidity all contribute positively to

the variability of UVP.21 Earlier in Table 5, we show that good economic uncertainty is a

significantly procyclical state variable, while risk aversion and high illiquidity risk are strictly

countercyclical. Thus, our evidence suggests that UVP increases with the procyclical good eco-

nomic uncertainty through the hedging demand of upside volatility risk; in addition, UVP also

increases with the countercyclical risk aversion and market illiquidity risk through the general

risk compensation intuition (higher compensation demanded when risk aversion and/or pure fi-

nancial market risk increases). These counteracting effects, with the first channel being slightly

stronger, explain the procyclical and relatively less persistent UVP dynamics documented in

Section 2.2.

Interestingly, the positive relation between good uncertainty and UVP is quite sensitive

to the current economic condition. During extremely volatile months when zt is high, good

economic uncertainty contributes less positively to UVP, leading to sudden drops in the UVP

level (such as the one in October 2008). This is formally captured by the negative wUθp,1 coeffi-

cient estimate (Table 9) and the decreasing UVP loading on θpt as zt increases (Table 10). One

possible explanation is that an economic fallout leads to less demand to hedge against future

upside variance risk.

21The variance contribution is calculated as βxcov(xt,ŷt)
ŷt

× 100%, where xt denotes an explanatory variable,
βx the corresponding loading, and ŷt the total explained dependent variable. Note that, if βx and cov(xt, ŷt)
have different signs, the variance contribution from variable xt can be negative. This suggests that xt might also
comove with the unexplained part of the dependent variable, which makes implications about that particular
explanatory variable not as reliable as those with positive VARCs.
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5.3.2. International stock return predictability

A Global View. Figure 8-(A) shows the model-implied changes in an average country’s equity

risk premium (EP) given one SD increase in a common risk premium state variable.22 Equity

risk premiums are expressed in annualized percents. For horizons up to 7 months, where we

center the attention, the three main common risk premium sources – US economic uncertainty,

risk aversion, and illiquidity uncertainty – contribute positively to the average country’s equity

risk premium. The sensitivities of global equity risk premiums to these premium state variables

change with the horizon. Both good and bad economic uncertainties contribute positively to

the global equity risk premium, which is potentially consistent with theoretical suggestions in

a pure domestic setting from Segal, Shaliastovich, and Yaron (2015) (e.g., pp.375). However,

the positive effects of bad economic uncertainty, θnt, becomes dominant in contributing to the

global equity risk premium at the 4-month or longer horizon. In contrast, risk aversion and pure

financial uncertainty (stock market illiquidity uncertainty) have stable and positive effects for

all horizons; one SD risk aversion, qht, or high illiquidity uncertainty, illiqht, leads to between

two and three annualized percent increases in the global equity risk premium. These results

suggest that, among economic uncertainty, risk aversion, and financial uncertainty, economic

risk compensations may be more crucial at short horizons. To directly demonstrate this point,

Figure 9 depicts the variance decomposition of the model-implied global equity risk compensa-

tion at various horizons (see solid lines denoted as “MM” for the global-level view), and shows

that economic uncertainty explains about 70-80% at horizons under 7 months.

We next illustrate the relative importance of the five common premium state variables

in explaining the predictive coefficients of the VP components. We use a Jackknife exercise.

Specifically, we replace the equity premium loading on a particular premium state variable

with 0 and recompute the implied predictive coefficient. As a result, the lower the implied

coefficient is, the more important the state variable is in explaining the predictability. This can

be accomplished given our unique estimation strategy.

Figure 8-(B) depicts the implied coefficients and focuses on horizons with significant pre-

22While the dynamic fitting of the VP components improves by allowing time-varying loadings on the common
risk premium state variables (see earlier discussions in Section 5.2 and evidence in Figure 7), we find little
evidence that zt plays an economically important role in determining international equity risk premiums at the
horizons of interests. In other words, the vx,κ,3 coefficient estimate in Equation (21) is economically small. In
Appendix G, we compare the EP loadings when zt is min(zt) or max(zt), and find that they are extremely close.
The intuition is first mentioned in Footnote 20. This observation hence motivates the use of mean(zt) in creating
and discussing Figures 8 and 11.
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dictability across countries in our empirical evidence. The top plot shows that the DVP pre-

dictive coefficient decreases most saliently after deleting the bad economic uncertainty channel,

θnt, or the risk aversion channel, qht; between the two, θnt dominates. While θnt explains

merely 30% of the DVP dynamics, we find that DVP predicts international stock excess re-

turns mostly through the bad economic risk compensation channel. In addition, the bottom

plot shows that the good economic uncertainty channel is potentially crucial for explaining the

pattern and magnitude of the international predictability of UVP.

As a validation exercise, Figure 10 depicts the model-implied global equity risk com-

pensation demanded by the US/global investor at 3-, 6-, and 12-month horizons. The first

observation is that the model-implied global risk compensations at various horizons are all gen-

erally countercyclical, which is consistent with the literature. Second, on average, the global risk

compensation is smaller at longer horizons (see the dotted line), which suggests a downward-

sloping term structure of common global risk compensation in international equity markets,

adding to the recent discussions considering the US equity market only (see e.g. Boguth, Carl-

son, Fisher, and Simutin (2011), Van Binsbergen, Brandt, and Koijen (2012), Van Binsbergen,

Hueskes, Koijen, and Vrugt (2013), Croce, Lettau, and Ludvigson (2015)). Third, the short-

term global risk compensation appears to be particularly higher than the long-term counterpart

during high economic uncertainty periods; for instance, the good uncertainty spikes of 1998 and

the bad uncertainty spikes of 2007-2008. This finding is consistent with Figure 8, where we

show that economic uncertainties may be more important risk premium determinants at short

horizons, while risk aversion and pure financial market uncertainty likely determine the whole

term structure.

A Cross-Country View. We complement our average country analysis and calibrate the

results considering country groups with low and high integration. Specifically, we consider four

country groups with low/high economic and financial integration, where “low” (“high”) uses

the 33th (67th) value of the cross-country integration level (see Table 6).

Figure 11 demonstrates that US/global investors may demand a lower global economic

risk compensation but a higher global financial market risk compensation for countries with

higher integration (especially financial integration). The former result is potentially consistent

with the international risk sharing story where global investors demand a lower risk compensa-

tion given a lower cost of capital, greater firm and fundamental investment opportunities, and
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higher expected growth (Bekaert and Harvey (2003); Carrieri, Errunza, and Hogan (2007)); the

latter result is potentially consistent with the increasing chance of higher global systemic risk

exposure that cannot be diversified away. Moreover, the relative importance of market-wide

risk aversion is also slightly higher for countries with higher integration. Note that, while the

two integration measures are able to generate a realistic cross-section of predictive coefficients

(see Table 8), these integration measures are also moderately correlated at 0.48; which suggests

that distinguishing the effects of the two integration types is challenging.

Figure 12 conducts similar Jackknife exercises for these four country groups. Panel (A)

shows that the high (low) integration country return predictability is mainly through the finan-

cial market risk aversion (economic uncertainty) channel, as the bar size drops more significantly

after deleting this channel. This result is consistent with Figure 11. As similarly seen in the av-

erage country analysis, Panel (B) illustrates a significant role of good uncertainty in explaining

the predictability of UVP, which is even more salient for low integration countries.

6. Conclusion

Understanding the commonality in international equity risk premiums and the trans-

mission of global risks across international financial markets remains an open debate in the

literature. In this paper, we add to this debate by using a novel approach in which we link

empirical evidence for the international stock return predictability of US downside and upside

variance risk premiums with the implications of an asset pricing framework using data for 22

countries from 1991 to 2019.

We find that the international predictability patterns of DVP (positive and countercycli-

cal) and UVP (smaller in magnitude and procyclical) are considerably different, with DVP

being a robust mid-horizon (4-7 month) predictor and UVP a short-horizon (1-3 month) pre-

dictor. We link these results to the implications of a conceptual asset pricing framework that

takes the perspective of a US/global investor and features heteroskedastic and asymmetric US

macroeconomic, financial market (illiquidity), and risk aversion shocks. The main intuition

from the model solution is that international stock return predictability should be determined

by common economic determinants of the VP components and global equity risk compensations.

We find that DVP and UVP predict international stock returns through different common risk

premium determinants, mainly bad and good US macroeconomic uncertainties, respectively.
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At the country level, our results also suggest that US/global investors demand a lower global

macroeconomic risk compensation but a higher global pure financial market risk compensation

for countries with higher integration.

Our approach of linking international predictability evidence with an asset pricing frame-

work allows us to use more information to infer the global nature of risk compensations across

time, across horizons, and across countries. This methodology should naturally inspire several

extensions of our work, including examining whether global risk premium determinants transmit

through local-currency equity risk pricing or through exchange rate channels, involving other

international finance puzzles similar to the work in Colacito and Croce (2010) and Colacito,

Croce, Gavazzoni, and Ready (2018). Moreover, future work should integrate our findings to

existing general equilibrium models with an international perspective.
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Table 1: Expected downside and upside realized variances

This table shows the coefficients associated with the predictors of one-month-ahead (22 days) downside and
upside realized variances, in panels A and B, respectively. The specification in column (1) assumes that realized
variances follow a Martingale (E(rvit+1) = rvit, for i = D,U (downside or upside)). For the specifications in
columns (2) to (5), we estimate the following regression setting:

Et(rv
i
t+1m) = α̂i + γ̂iXi

t.

We consider the following predictors, Xt, at time t: the total realized variance calculated over the last month

(rvt−1m,t) and its downside an upside components (rvit−1m,t); realized semivariances calculated using either the

last five days (rvit−5d,t) or the last day of the month (rvit−1d,t); and the downside and upside components of the

option-implied variance (ivit,t+1m). All regressions are estimated using daily data. The sample runs from April

1991 to December 2019. Heteroskedasticity and autocorrelation consistent (HAC) standard deviations with 44

lags are reported in parentheses. ∗∗∗ (∗∗, ∗) represent significance at the 1% (5%, 10%) confidence level. The

adjusted R2s are reported at the end of each panel.

(1) (2) (3) (4) (5)

Panel A. Downside realized variance

Constant 0 4.17*** 4.11*** 3.88*** 3.18***
- (0.63) (0.67) (0.55) (1.00)

rvt−1m,t 0.43
(0.36)

rvDt−1m,t 1 0.62*** 0.10 0.29** 0.23***
(0.07) (0.21) (0.13) (0.08)

rvDt−5d,t 0.29** 0.27*
(0.13) (0.15)

rvDt−1d,t 0.06*** 0.04*
(0.01) (0.03)

ivDt,t+1m 0.08
(0.10)

Adj. R2 0.23 0.378 0.378 0.428 0.429

Panel B. Upside realized variance

Constant 0 3.73*** 3.80*** 3.39*** 0.84
- (0.64) (0.64) (0.59) (0.73)

rvt−1m,t -0.60
(0.40)

rvUt−1m,t 1 0.64*** 0.61*** 0.30** 0.07
(0.08) (0.17) (0.15) (0.11)

rvUt−5d,t 0.30** 0.24
(0.15) (0.15)

rvUt−1d,t 0.05*** 0.03**
(0.01) (0.01)

ivUt,t+1m 0.57***
(0.11)

Adj. R2 0.29 0.414 0.433 0.461 0.499
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Table 2: Summary statistics for variance premium components

This table reports time series averages of the monthly risk-neutral and physical expectations of the variances
(ivt,t+1 and Et(rvt,t+1), respectively) as well as the corresponding monthly variance premiums (VPs). The
monthly time series are end-of-month estimates from Table 1. All measures are in units of monthly variance—
i.e., in annual percentage squared divided by 12 (as commonly used in the literature; see, e.g., Bekaert and
Hoerova (2014), Kilic and Shaliastovich (2019), among many others). For VP estimates, we also report standard
deviations and minimum and maximum values. The sample runs from April 1991 to December 2019.

(1) (2) (3) (4) (5)

Panel A. DVP

Mean(ivDt,t+1) 23.67 23.67 23.67 23.67 23.67
Mean(Et(rv

D
t,t+1)) 10.87 7.04 7.08 7.05 7.69

Mean(vpDt,t+1) 12.79 16.63 16.58 16.61 15.97
SD(vpDt,t+1) 11.24 14.08 14.10 13.85 13.52
Min(vpDt,t+1) -23.49 2.47 2.41 2.21 2.24
Max(vpDt,t+1) 81.25 97.91 99.64 91.00 93.05

Panel B. UVP

Mean(ivUt,t+1) 11.03 11.03 11.03 11.03 11.03
Mean(Et(rv

U
t,t+1)) 10.50 7.07 7.02 7.34 9.76

Mean(vpUt,t+1) 0.53 3.96 4.01 3.69 1.26
SD(vpUt,t+1) 9.76 6.19 6.15 6.30 3.28
Min(vpUt,t+1) -138.25 -59.87 -64.41 -62.93 -35.48
Max(vpUt,t+1) 23.27 31.07 22.70 26.17 9.56

Panel C. Correlations within models

Correl(vpt,t+1,vpDt,t+1) 0.85 0.95 0.94 0.93 0.97
Correl(vpt,t+1,vpUt,t+1) 0.79 0.69 0.65 0.59 0.26
Correl(vpUt,t+1,vpDt,t+1) 0.35 0.43 0.36 0.25 0.03
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Table 3: International predictability of VP and its components

The table reports evidence for the predictability of the variance premium and its components for inter-
national stock returns at various horizons of interest (in units of months). Our main specification is the
following:

κ−1ri,t,t+κ = ai,κ + aκ + bκ,Dvp
D
t,t+1 + bκ,Uvp

U
t,t+1 + εi,t+κ,

where ri,t,t+κ denotes the κ-month-ahead log excess returns for country i and vpDt,t+1 and vpUt,t+1 denote
DVP and UVP estimates, respectively. We compare our main specification with one in which the
coefficients associated with DVP and UVP are homogeneous, which is equivalent to a regression for the
predictability of the total VP:

κ−1ri,t,t+κ = ai,κ + aκ + bκ(vpDt,t+1 + vpUt,t+1) + εi,t+κ.

In both specifications, the coefficients are estimated using ordinary least squares (OLS) where the coef-
ficients associated with VP and its components are restricted to be homogeneous across countries. The
VP estimated coefficients and their h-lag corrected Newey-West standard errors (in parentheses) are
reported along with the adjusted R2. “VARC” indicates the variance decomposition of the model. ∗∗∗

(∗∗, ∗) represent significance at the 1% (5%, 10%) confidence level.

κ=1 κ=3 κ=6 κ=12
vp 0.1187 0.2645 0.3127*** 0.1604**
(SE) (0.3365) (0.1775) (0.1088) (0.0718)
vpD -0.0111 0.2149 0.2987*** 0.1785***
(SE) (0.3370) (0.1756) (0.1085) (0.0692)
[VARC%] [0.0%] [43.1%] [83.8%] [98.0%]
vpU 2.0996** 1.0198* 0.5263* -0.116
(SE) (0.8620) (0.5834) (0.2883) (0.2395)
[VARC%] [100.0%] [56.9%] [16.2%] [2.0%]
Adj. R2 0.04% 0.82% 0.66% 0.96% 1.67% 1.71% 0.85% 0.99%
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Table 4: Robustness tests for the international predictability of VP and its components

The table reports the results from two robustness tests on our main results for the predictability of DVP
and UVP in Table 3. Panel A considers the Martingale VP measures (Measure (1) in Tables 1 and 2).
Panel B uses our selected VP measures and controls for two traditional macrofinance predictors; the
three-month US Treasury bill rate (denoted by bill), which is obtained from FRED; the earnings yield

of the S&P500 index (denoted by log(Et/Pt)), where earnings at t is approximated by 1
12

∑11
i=0Et−i,

and Et and Pt are obtained from Shiller’s website. The estimates and their h-lag corrected Newey-West
standard errors (in parentheses) are reported along with the adjusted R2. “VARC” indicates the variance
decomposition of the model. ∗∗∗ (∗∗, ∗) represent significance at the 1% (5%, 10%) confidence level.

Panel A: Using Martingale VP measures
κ=1 κ=3 κ=6 κ=12

vp 0.3484* 0.3849*** 0.2136** 0.0510
(SE) (0.2019) (0.0983) (0.0913) (0.0761)
vpD 0.0319 0.522*** 0.4266*** 0.2404***
(SE) (0.4482) (0.1981) (0.1511) (0.0857)
[VARC%] [1.9%] [81.4%] [102.7%] [79.3%]
vpU 0.7384* 0.2162 -0.0489 -0.1823**
(SE) (0.3847) (0.1594) (0.1178) (0.0805)
[VARC%] [98.1%] [18.6%] [-2.7%] [20.7%]
Adj. R2 0.64% 0.94% 2.15% 2.30% 1.19% 1.88% 0.12% 1.18%

Panel B: Controlling for traditional macrofinance variables
κ=1 κ=3 κ=6 κ=12

vpD -0.0102 0.2286 0.3089*** 0.1339*
(SE) (0.3532) (0.1850) (0.1096) (0.0745)
[VARC%] [0.0%] [36.6%] [68.2%] [37.5%]
vpU 2.3334*** 1.2024** 0.7115** -0.0624
(SE) (0.9041) (0.5989) (0.3136) (0.2666)
[VARC%] [93.2%] [53.5%] [17.2%] [0.6%]
bill -1.0028 -0.5017 -0.5886 -1.1898***
(SE) (1.3266) (0.7645) (0.5456) (0.4055)
[VARC%] [4.4%] [5.1%] [8.8%] [60.2%]
log(Et/Pt) 8.9768 7.9349 7.8022 -1.0664
(SE) (12.1486) (6.8150) (4.8470) (3.5958)
[VARC%] [2.5%] [4.8%] [5.9%] [1.7%]
Adj. R2 0.96% 1.19% 2.15% 1.93%
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Table 5: Summary statistics of risk premium state variables

This table provides summary statistics of our main five risk premium state variables introduced in Sec-
tion 4: good and bad economic uncertainty (θpt and θnt, respectively), expected risk aversion fluctuations
(qht), and high and low stock market illiquidity uncertainty (illiqht and illiqlt, respectively). The full
sample estimation results and detailed dynamic processes are deferred to Appendix B. ∗∗∗ (∗∗, ∗) rep-
resent significance at the 1% (5%, 10%) confidence level. The summary statistics are calculated for a
sample running from April 1991 to December 2019.

θpt θnt qht illiqht illiqlt
Panel A. Univariate statistics,

Mean 476.020 3.342 0.838 1.191 0.702
SD 15.176 7.798 1.107 1.376 0.046
Skewness 0.724 5.133 3.379 1.935 1.247

Panel B. Correlation matrix
θpt 1
θnt -0.222*** 1
qht -0.070 0.191*** 1
illiqht 0.159*** 0.084 0.115** 1
illiqlt 0.348*** -0.035 0.116** 0.058 1
NBER -0.182*** 0.532*** 0.205*** 0.142*** -0.077
Cyclicality Pro- Counter- Counter- Counter- A-cyclical

Table 6: Country-level economic and financial integration indicators

This table presents the country-level integration proxies: the average trade-to-GDP ratio (source: World
Bank; 1989-2018) as the proxy for a country’s economic integration, and the average total asset and
liability holdings from country i to the rest of the world (source: IMF, The Coordinated Portfolio
Investment Survey; 2001-2018) as the proxy for a country’s financial integration (Schularick and Steger
(2010)). This table also provides a within-variable sort: low, [0th, 33th); middle, [33th,67th); high,
[67th,100th].

Trade-to-GDP Holdings-to-GDP
in % L/M/H in % L/M/H

Australia 39.5 L 106.9 L
Austria 86.9 M 171.8 H
Belgium 138.7 H 236.0 H
Canada 65.8 L 121.0 M
Denmark 85.0 M 178.4 M
Finland 69.1 M 211.8 M
France 52.0 M 189.1 L
Germany 64.7 M 148.1 M
Hong Kong 309.9 H 330.4 H
Ireland 159.4 H 1185.9 H
Italy 48.1 L 121.9 L
Japan 24.6 L 86.3 L
Netherlands 125.2 H 396.2 H
New Zealand 57.7 L 63.6 M
Norway 70.0 M 223.5 M
Portugal 66.8 M 141.0 M
Singapore 356.6 H 450.7 H
Spain 52.1 L 114.7 L
Sweden 77.0 M 190.8 M
Switzerland 99.4 H 302.8 H
United Kingdom 52.9 H 236.1 L
United States 24.7 L 93.7 L
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Table 7: Model fit: VP component dynamics

This table presents the moment matching results of the GMM system used to estimate the loadings
of DVP and UVP on the five risk premium state variables (see details in Section 5.1). Two GMM
systems are estimated: one with time-varying loadings (22 unknowns) and one with constant loadings
(12 unknowns). Both GMM systems have 40 moments and are estimated using iterative GMM. ∗∗∗

indicates that the model estimate is within 1.645 SD of the empirical point estimate in the same row.
Standard model specification statistics and empirical correlations are shown at the end of the table.

Moment Empirical Boot. SE Model
time-varying constant

1 vpD 15.972 (0.725) 16.464*** 10.05
2 vpU 1.265 (0.173) 1.241*** -0.202
3 (vpD − E(vpD))2 182.198 (33.504) 180.071*** 175.881***
4 (vpU − E(vpU ))2 10.755 (4.230) 10.701*** 4.383***
5 (vpD − E(vpD))3/(SD(vpD)3) 2.656 (0.885) 2.752*** 2.867***
6 (vpU − E(vpU ))3/(SD(vpU )3) -5.001 (3.959) -4.146*** 0.687***
7 (vpD − E(vpD))4/(SD(vpD)4) 12.293 (4.287) 11.955*** 12.821***
8 (vpU − E(vpU ))4/(SD(vpU )4) 53.202 (45.926) 48.432*** 7.718
9 (vpD − E(vpD)) ∗ (vpU − E(vpU )) 1.262 (8.555) -1.981*** -3.18***

10 vpD/(vpD + vpU ) 0.927 (0.010) 0.924*** 0.626
GMM J Statistics: 15.78 61.56
DF: 18 28
Hansen’s Overidentification Test, p-value: 0.61 0.00
Dynamic correlation with empirical estimates, DVP: 0.88 0.74
Dynamic correlation with empirical estimates, UVP: 0.48 0.16

38



Table 8: Model fit: VP component predictive coefficients

This table provides the model fit results of the international stock return predictive coefficients of the
VP components (see details in Section 5.1). To summarize the information, Panels A and B report the
average, mean, and cross-country variation of the DVP and UVP predictive coefficients, respectively, and
provide closeness tests with their empirical counterparts; ∗∗∗ (∗∗;∗) indicates that the model estimate is
within the 1.645 (1.96;2.576) SD of the empirical point estimate in the same row. Rows in bold indicate
horizons with significant predictability for most countries according to our empirical evidence.

Panel A Average DVP coeff. Median DVP coeff. Cross-country SD DVP coeff.
Horizon Emp. SE Model Emp. SE Model Emp. SE Model

1 -0.011 (0.052) -0.059*** -0.036 (0.070) -0.027*** 0.245 (0.027) 0.148
2 0.188 (0.043) 0.142*** 0.151 (0.048) 0.177*** 0.202 (0.025) 0.147*
3 0.215 (0.036) 0.176*** 0.188 (0.032) 0.205*** 0.171 (0.023) 0.130**
4 0.226 (0.036) 0.186*** 0.221 (0.026) 0.215*** 0.169 (0.024) 0.134***
5 0.262 (0.036) 0.225*** 0.262 (0.031) 0.26*** 0.169 (0.025) 0.128***
6 0.299 (0.036) 0.253*** 0.289 (0.030) 0.287*** 0.168 (0.025) 0.131***
7 0.287 (0.035) 0.247*** 0.265 (0.030) 0.284*** 0.166 (0.027) 0.136***
8 0.235 (0.034) 0.202*** 0.220 (0.027) 0.239*** 0.161 (0.028) 0.134***
9 0.214 (0.033) 0.181*** 0.214 (0.023) 0.217*** 0.157 (0.028) 0.128***

10 0.189 (0.033) 0.164*** 0.191 (0.021) 0.199*** 0.155 (0.028) 0.125***
11 0.185 (0.033) 0.158*** 0.184 (0.022) 0.195*** 0.153 (0.028) 0.132***
12 0.179 (0.032) 0.157*** 0.174 (0.023) 0.192*** 0.149 (0.027) 0.127***

Panel B Average UVP coeff. Median UVP coeff. Cross-country SD UVP coeff.
Horizon Emp. SE Model Emp. SE Model Emp. SE Model

1 2.100 (0.241) 1.859*** 1.999 (0.178) 1.807*** 1.128 (0.203) 0.627*
2 0.922 (0.174) 0.782*** 0.995 (0.150) 0.814*** 0.814 (0.142) 0.450**
3 1.020 (0.117) 0.903*** 1.272 (0.137) 0.953*** 0.548 (0.101) 0.392**
4 1.227 (0.106) 1.096*** 1.309 (0.126) 1.175*** 0.497 (0.074) 0.268
5 0.891 (0.081) 0.816*** 0.906 (0.120) 0.881*** 0.380 (0.050) 0.217
6 0.526 (0.063) 0.482*** 0.551 (0.073) 0.555*** 0.293 (0.046) 0.224***
7 0.276 (0.053) 0.273*** 0.299 (0.083) 0.329*** 0.247 (0.033) 0.188***
8 0.237 (0.053) 0.217*** 0.296 (0.083) 0.251*** 0.250 (0.031) 0.158
9 -0.009 (0.045) -0.004*** -0.009 (0.047) 0.038*** 0.209 (0.032) 0.126

10 -0.069 (0.047) -0.074*** -0.049 (0.055) -0.042*** 0.219 (0.036) 0.100
11 -0.125 (0.048) -0.127*** -0.122 (0.058) -0.089*** 0.225 (0.036) 0.109
12 -0.116 (0.047) -0.115*** -0.107 (0.056) -0.08*** 0.220 (0.036) 0.114
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Table 9: Loadings of VP components on risk premium state variables

This table presents the estimation results of the GMM framework and the relative importance of the risk
premium state variables in driving the dynamics of VPs. Details are presented in Section 5.1. For each

GMM iteration, the model-implied DVP and UVP (v̂pDt and v̂pUt , respectively) can be expressed as:

v̂pDt = vpD0 + wDθp,tθ̂pt + wDθn,tθ̂nt + wDqh,tq̂ht + wDilliqh,tîlliqht + wDilliql,tîlliqlt,

v̂pUt = vpU0 + wUθp,tθ̂pt + wUθn,tθ̂nt + wUqh,tq̂ht + wUilliqh,tîlliqht + wUilliql,tîlliqlt,

where, for x ∈ {θp, θn, qh, illiqh, illiql}, x̂ indicates the estimated risk premium state variables (Sec-
tion 4), and wDx,t and wUx,t indicate the corresponding time-varying coefficients:

wDx,t = wDx,0 + wDx,1zt,

wUx,t = wUx,0 + wUx,1zt,

and zt is the current squared innovation to real economic growth. Standard errors are shown in parenthe-
ses and variance decomposition results are shown in the third row (“VARC”). The variance contribution

is calculated as βvcov(vt,ŷt)
ŷt

× 100%, where vt denotes an explanatory variable, βv the corresponding

loading, and ŷt the total explained y variable. ∗∗∗ (∗∗, ∗) represent significance at the 1% (5%, 10%)
confidence level.

θpt θnt qht illiqht illiqlt Constant
DVP wD0 -0.041 0.885*** 7.762*** -0.35 83.505*** -32.257

(0.061) (0.134) (0.358) (0.506) (14.412) (25.616)
[VARC%] [0.46%] [33.27%] [52.20%] [-0.49%] [9.34%]
wD1 14.143 -522.083*** 5323.575*** 16282.641*** -27746.517***

(11.003) (5.474) (70.288) (269.496) (7465.181)
[VARC%] [2.64%] [-8.97%] [10.29%] [8.98%] [-7.72%]

UVP wU0 0.074** 0.177*** 1.19*** 0.476*** -26.99** -15.935
(0.036) (0.039) (0.145) (0.122) (13.106) (11.539)

[VARC%] [5.82%] [-4.04%] [5.11%] [6.62%] [6.04%]
wU1 -76.725*** 41.821*** -1.364 1306.134*** 1068.634

(18.526) (5.932) (34.542) (90.690) (1273.898)
[VARC%] [88.54%] [-3.74%] [0.01%] [-2.54%] [-1.82%]

Table 10: Economic magnitude of VP loadings

This table complements Table 9 and provides economic magnitude of the sensitivity of the VP components
to each risk premium state variable at four different values of zt, the proxy for the current economic
condition (sample average, 90th, 95th, and 99th percentiles).

zt values θpt θnt qht illiqht illiqlt
DVP Mean(zt) -0.6123 6.8424 8.6720 -0.1713 3.8341

90th(zt) -0.5989 6.5886 9.0393 1.2258 3.7543
95th(zt) -0.5862 6.3463 9.3900 2.5593 3.6782
99th(zt) -0.5158 5.0125 11.3204 9.9011 3.2588

UVP Mean(zt) 1.1085 1.3868 1.3172 0.6803 -1.2443
90th(zt) 1.0359 1.4071 1.3171 0.7924 -1.2412
95th(zt) 0.9666 1.4265 1.3170 0.8994 -1.2383
99th(zt) 0.5851 1.5334 1.3165 1.4883 -1.2221
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Figure 1: Option-implied variance and its downside and upside components

This figure shows the time series of total option-implied variance (top panel) and its downside and
upside components (bottom panel). The construction details for option-implied variances are discussed
in Section 2. Measures are in units of monthly percentages (i.e., in the same unit as V IX-squared divided
by 12, or annual percentage squared divided by 12).
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Figure 2: Downside and upside components of the variance risk premium

This figure shows the time series of the downside and upside variance premium components. The con-
struction details of variance risk premiums are discussed in Section 2. The downside (upside) variance
risk premium is calculated as the difference between the option-implied downside (upside) variance and
the expected downside (upside) realized variance. We use the best forecasts of the downside and upside
realized variances from Table 1 (specification (5)). Measures are in units of monthly percentages.
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Figure 3: International stock return predictability of DVP and UVP

This figure shows the predictive coefficient estimates of the downside (DVP, top) and upside (UVP,
bottom) variance premiums at horizons between 1 and 12 months for the main predictability regression
setting:

κ−1ri,t,t+κ = ai,κ + aκ + bκ,dvp
D
t,t+1 + bκ,uvp

U
t,t+1 + εi,t,t+κ,

where ri,t,t+κ denotes the cumulative κ-month-ahead log excess returns for country i. The dashed lines
depict 90% confidence intervals given Newey-West standard errors.
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Figure 4: DVP coefficients

This figure shows the predictive coefficient estimates of the downside variance premium (the solid lines)
and its 90% confidence interval given Newey-West standard errors (the dashed lines) at the country level.
The regression setting is the following:

κ−1ri,t,t+κ = ai,κ + bi,κ,dvp
D
t,t+1 + bi,κ,uvp

U
t,t+1 + εi,t,t+κ,

where ri,t,t+κ denotes the cumulative κ-month-ahead log excess returns for country i.
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Figure 5: UVP coefficients

This figure shows the predictive coefficient estimates of the upside variance premium (the solid lines) and
its 90% confidence interval given Newey-West standard errors (the dashed lines) at the country level.
The regression setting is the following:

κ−1ri,t,t+κ = ai,κ + bi,κ,dvp
D
t,t+1 + bi,κ,uvp

U
t,t+1 + εi,t,t+κ,

where ri,t,t+κ denotes the cumulative κ-month-ahead log excess returns for country i.
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Figure 6: State variable dynamics

This figure shows the dynamics of the estimated risk premium state variables (good and bad economic
uncertainty, θpt and θnt, expected risk aversion fluctuations, qht, and high and low stock market illiquid-
ity uncertainty, illiqht and illiqlt) and the time-varying loading instrument (realized variance of economic
growth, zt) for the sample running between April 1991 and December 2019. The corresponding summary
statistics are shown in Table 5. The full sample estimation results and detailed dynamic processes are
deferred to Appendix B.
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Figure 7: Dynamic fit

This figure shows the dynamics of empirical and model-implied DVP (top) and UVP (bottom) estimates.
The empirical estimates, in dashed red lines, are obtained from Section 2. The model-implied estimates
are obtained from Section 5 and we consider both constant (dotted blue lines) and time-varying (solid
black lines) loadings. Other estimation details are shown in Table 7.
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Figure 8: Economic interpretations of international equity risk premiums and stock return
predictability: An average-country view

Panel (A) shows the model-implied changes in an average country’s equity risk premium (EP) given
one SD increase in a US/global risk premium state variable, where an average country is calibrated
with median trade-to-GDP and holdings-to-GDP values and EP is expressed in annualized percents
for all horizons. Panel (B) shows the implied predictive coefficients after deleting one risk premium
state variable in the implied EP at a time; the lower the implied coefficient (the bar size) is, the more
important the state variable is in explaining the predictability. This panel focuses on horizons with
significant predictability according to the empirical evidence (less than seven months).
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Figure 9: Variance decomposition

This figure shows the variance decomposition (in %) of the model-implied international equity risk
premiums at various horizons. The solid black lines show variance decomposition results for an average
country with median economic and financial integration, MM, to make inferences about global risk
compensations. The other four lines show results for country groups with various low/high economic
and financial integration (see Table 6).
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Figure 10: Time variation in model-implied equity risk premiums

This figures shows the time variation in model-implied equity risk premiums for an average country with
median economic and financial integration at the 3-, 6-, and 12-month horizons. Equity risk premiums
are expressed in annualized percents.
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Figure 11: Economic interpretations of international equity risk premiums: A cross-country
view

This figure complements Figure 8-(A) with a cross-country view, showing the marginal changes in four
country-type equity risk premiums given one SD increase in a common premium state variable. The
results are calibrated using low/high economic and financial integration, with low (high) using 33th
(67th) percentile value of the 22 countries. See other details in Figure 8.
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(B) UVP predictive coefficients without a state variable
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Figure 12: Economic interpretations of international stock return predictability: A cross-country
view

This figure complements Figure 8-(B) with a cross-country view, showing the implied predictive coef-
ficients for four country types after deleting one premium state variable in the implied EP at a time.
The lower the implied coefficient (bar) is, the more important the state variable is in explaining the
predictability. The results are calibrated using low/high economic and financial integration, with low
(high) using 33th (67th) percentile value of the 22 countries. See other details in Figure 8.
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APPENDICES

A. Additional tables and figures for Section 2

Table A1: Expected realized variance

This table shows the coefficients associated with the predictors of one-month-ahead (22 days) total realized

variance. The specifications are similar to those for realized semivariances in Table 1. The specification in

column (1) assumes that realized variance follow a Martingale (Et(rvt+1m) = rvt). For the specifications in

columns (2) to (5), we estimate the following regression setting: Et(rvt+1) = α̂+ γ̂Xt. We consider the following

predictors in matrix X: the total realized variance calculated over the last month (rvt−1m,t); realized variance

calculated using either the last five days (rvt−5d,t) or the last day of the month (rvt−1d,t); and the option-implied

variance (ivt,t+1m). We report, in parentheses, heteroskedasticity and autocorrelation consistent (HAC) standard

deviations with 44 lags. ∗∗∗ (∗∗, ∗) represent significance at the 1% (5%, 10%) confidence level. The adjusted

R2s are reported at the end of the table.

(1) (2) (3) (4) (5)

Constant 0 7.72*** 7.72*** 6.96*** 4.15***
- (1.28) (1.28) (1.10) (1.56)

rvt−1m,t 1 0.64*** 0.64*** 0.27*** 0.12
- (0.08) (0.08) (0.10) (0.09)

rvt−5d,t 0.32** 0.29*
(0.16) (0.17)

rvt−1d,t 0.09*** 0.06**
(0.02) (0.02)

ivt,t+1m 0.21*
(0.12)

Adj. R2 0.27 0.406 0.406 0.466 0.474

Table A2: Correlations

This table reports correlations among the monthly US downside and upside variance premiums across various
measures. Models are reported in Table 1. Panel A (Panel B) reports correlations of DVP (UVP) estimates
across measures. The sample runs from April 1991 to December 2019.

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)
A. Correlations across models; DVP B. Correlations across models; UVP
(1) 1 (1) 1
(2) 0.87 1 (2) 0.80 1
(3) 0.87 0.99 1 (3) 0.77 0.94 1.00
(4) 0.77 0.97 0.97 1 (4) 0.77 0.90 0.88 1
(5) 0.74 0.97 0.96 0.99 1 (5) 0.77 0.74 0.75 0.95 1

Appendix Page 1



Apr-91 Jun-95 Jul-99 Aug-03 Sep-07 Oct-11 Nov-15 Dec-19
0

50

100
Downside VP

Apr-91 Jun-95 Jul-99 Aug-03 Sep-07 Oct-11 Nov-15 Dec-19
-150

-100

-50

0

Upside VP

Benchmark

Measure(1)

Figure A1: Alternative measures of the VP and its components

The dashed lines denote the Martingale measure, or measure (1) in Tables 1 and 2. The solid lines denote the
benchmark VP measures used in the main empirical results (Table 1 and Figure 2). The shaded regions
indicate NBER recessions.
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Figure A2: DVP predictive coefficients, alternative VP measure

This figure shows the predictive coefficient estimates of DVP from the country-level predictive regression
specification in Equation (7), where predictors DVP and UVP use Measure (1), the Martingale measure
(see Table 2). The dashed lines correspond to the 90% confidence intervals for the given Newey-West
standard errors. The model specification is introduced in Section 2.3.
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Figure A3: UVP predictive coefficients, alternative VP measure

This figure shows the predictive coefficient estimates of UVP from the country-level predictive regression
specification in Equation (7), where predictors DVP and UVP use Measure (1), the Martingale measure
(see Table 2). The dashed lines correspond to the 90% confidence intervals for the given Newey-West
standard errors. The model specification is introduced in Section 2.3.
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Figure A4: DVP predictive coefficients, model with control predictors

This figure shows the predictive coefficient estimates of DVP from the country-level predictive regression
in an extended version of the setting in Equation (8) with control variables (US bill, earnings yield). The
dashed lines correspond to the 90% confidence intervals for the given Newey-West standard errors. The
model specification is introduced in Section 2.3.
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Figure A5: UVP predictive coefficients, model with control predictors

This figure shows the predictive coefficient estimates of UVP from the country-level predictive regression
in an extended version of the setting in Equation (8) with control variables (US bill, earnings yield). The
dashed lines correspond to the 90% confidence intervals for the given Newey-West standard errors. The
model specification is introduced in Section 2.3.
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B. Solution for the price-dividend ratio and log stock returns

Rewrite the dividend growth process and the pricing kernel in a matrix representation, ∆dt+1 = d0 +
d1Yt + d2Σωt+1 and mt+1 = m0 +m1Yt +m2Σωt+1, where Yt and ωt are the state variable vector and the
independent shock vector, respectively. Given the assumptions in Section 3, the US price-dividend ratio can be
rewritten as,

PDt = Et

[
Mt+1

(
Pt+1 +Dt+1

Dt

)]
=

∞∑
n=1

Et

[
exp

(
n∑
j=1

mt+j + ∆dt+j

)]
,

where mt+j indicates the future log US pricing kernel at month j and ∆dt+j the j-th month log dividend growth

rates. Let Fnt denote the n-th term in the summation, Fnt = Et
[
exp

(∑n
j=1mt+j + ∆dt+j

)]
, and hence Fnt Dt

means the price of zero-coupon equity that matures in n periods. The PDt can be rewritten as
∑∞
n=1 F

n
t .

We first prove that, ∀n ≥ 1, Fnt is an exactly exponential affine function of the state variables using induc-
tion. When n = 1, F 1

t = Et [exp (mt+1 + ∆dt+1)] = Et {exp [(m0 + d0) + (m1 + d1)Yt + (m2 + d2)Σωt+1]} =

exp
(
e10 + e1

1Yt
)
, where e10 and e1

1 are implicitly defined. Suppose that the (n−1)-th term Fn−1
t = exp

(
en−1
0 + en−1

1 Yt
)

,

then

Fnt = Et

[
exp

(
n∑
j=1

mt+j + ∆dt+j

)]

= Et


exp(mt+1 + ∆dt+1)Et+1

[
exp

(
n−1∑
j=1

mt+j+1 + ∆dt+j+1

)]
︸ ︷︷ ︸

Fn−1
t+1


= Et

[
exp(mt+1 + ∆dt+1) exp

(
en−1
0 + en−1

1 Yt+1

)]
= exp (en0 + en1Yt) ,

where en0 and en1 are implicitly defined. Hence, the price-dividend ratio can be solved as PDt =
∑∞
n=1 F

n
t =∑∞

n=1 exp (en0 + en1Yt) . The log return can be solved and approximated as,

rt+1 = ln

(
Pt+1 +Dt+1

Pt

)
= ∆dt+1 + ln

[
1 +

∑∞
n=1 exp (en0 + en1Yt+1)∑∞
n=1 exp (en0 + en1Yt)

]
≈ ∆dt+1 + const. +

∑∞
n=1 exp

(
en0 + en1 Ȳ

)
en1

1+
∑∞

n=1 exp(en0 +en1 Ȳ )∑∞
n=1 exp(en0 +en1 Ȳ )

Yt+1 −
∑∞
n=1 exp

(
en0 + en1 Ȳ

)
en1∑∞

n=1 exp
(
en0 + en1 Ȳ

) Yt

= ξ0 + ξ1Yt + ξ2Σωt+1.

Similarly, as the model takes the perspective of a US investor, the price-dividend ratio of country i is

modeled as PDi
t = Et

[
Mt+1

(
P i
t+1+D

i
t+1

Di
t

)]
=
∑∞
n=1Et

[
exp

(∑n
j=1mt+j + ∆dit+j

)]
. Suppose the country i

log dividend growth is ∆dit+1 = di0 +
(
di1Yt + di2Σωt+1

)
+ µit + uid,t+1, where di1 (di2) indicates the loadings

of country i’s dividend growth on the US lagged state variable levels (state variable shocks), and µit and uid,t+1

indicate the additional country-specific dividend growth mean and shock processes that are orthogonal to the US
shocks, respectively. Using the same induction procedure, it can be easily shown that,

PDi
t =

∞∑
n=1

Fnt =

∞∑
n=1

exp
(
ei,n0 + ei,n1 Yt + Idiosyncratic Parts

)
,

rit+1 = ln

(
P it+1 +Di

t+1

P it

)
= ξi0 + ξi1Yt + ξi2Σωt+1 + Idiosyncratic Parts.

C. Solution for the variance risk premium

The proof is similar to that in Bekaert, Engstrom, and Xu (forthcoming). First, the US one-period physical
conditional return variance can be easily obtained, given that ωt+1 ∼ Γ(ΩYt + e, 1) − (ΩYt + e), as:

V ARt(rt+1) = (ξ2Σ)◦2 (ΩYt + e) ,

where “◦” indicates element-by-element matrix multiplication.
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Second, the US one-period risk-neutral conditional return variance can be obtained using the moment
generating function (MGF) of gamma-distributed shocks. We start from the MGF under the risk-neutral measure:

mgfQt (rt+1; ν) =
Et [exp (mt+1 + νrt+1)]

Et [exp (mt+1)]

= exp {Et(mt+1) + νEt(rt+1) + [−(m2 + νξ2)Σ− ln (1− (m2 + νξ2)Σ)] (ΩYt + e)}
/ exp {Et(mt+1) + [−m2Σ− ln (1−m2Σ)] (ΩYt + e)}
= exp {νEt(rt+1) + [−νξ2Σ + [− ln (1− (m2 + νξ2) Σ) + ln (1−m2Σ)]] (ΩYt + e)} .

The first-order moment is the first-order derivative at ν = 0:

∂mgfQt (rt+1; ν)

∂ν
= mgfQt (rt+1; ν) ∗

{
Et(rt+1) +

[
(m2 + νξ2)Σ ◦ ξ2Σ ◦ (1− (m2 + νξ2)Σ)◦−1] (ΩYt + e)

}
EQt (rt+1) =

∂mgfQt (rt+1; ν)

∂ν
|ν=0

= Et(rt+1) +
[
m2Σ ◦ ξ2Σ ◦ (1−m2Σ)◦−1] (ΩYt + e) .

The second-order moment can be derived as follows:

∂2mgfQt (rt+1; ν)

∂ν2
= mgfQt (rt+1; ν) ∗

{
Et(rt+1) +

[
(m2 + νξ2)Σ ◦ ξ2Σ ◦ (1− (m2 + νξ2)Σ)◦−1] (ΩYt + e)

}2
+mgfQt (rt+1; ν) ∗

{[
(m2 + νξ2)Σ ◦ (ξ2Σ)◦2 − (1− (m2 + νξ2)Σ) ◦ (ξ2Σ)◦2

]
◦ (1− (m2 + νξ2)Σ)◦−2}

EQt (r2t+1) =
∂2mgfQt (rt+1; ν)

∂ν2
|ν=0

=
(
EQt (rt+1)

)2
+
[
(ξ2Σ)◦2 ◦ (1−m2Σ)◦−2] (ΩYt + e) .

As a result, the one-period risk-neutral conditional variance is

V ARQt (r̃it+1) = EQt

(
(r̃it+1)2

)
−
(
EQt (r̃it+1)

)2
=
[
(ξ2Σ)◦2 ◦ (1−m2Σ)◦−2] (ΩYt + e) .

The US variance risk premium is, as displayed in Equation (13), given by:

V ARQt (r̃it+1)− V ARt(r̃it+1) =
{

(ξ2Σ)◦2 ◦
[
(1−m2Σ)◦−2 − 1

]}
(ΩYt + e) .

D. Solution for the equity risk premiums

The risk free rate is derived as,

rft = − ln {Et [exp(mt+1)]}
= − ln {Et(mt+1) + [−m2Σ− ln (1−m2Σ)] (ΩYt + e)} .

We then impose the no-arbitrage condition, 1 = Et[exp(mt+1 + rt+1)], and obtain the expected excess returns.
By expanding the law of one price (LOOP) equation, we obtain:

1 = Et[exp(mt+1 + rt+1)]

= exp {Et(mt+1) + Et(rt+1) + [− (m2 + ξ2) Σ− ln (1− (m2 + ξ2) Σ)] (ΩYt + e)} ,

where m2, ξ2, Σ and e are constant matrices defined above. Given the risk free rate derived above, the US
equity risk premium is, as displayed in Equation (14), given by:

Et(rt+1)− rf t = {ξ2Σ + ln [1− (m2 + ξ2)Σ]− ln(1−m2Σ)} (ΩYt + e).

Similarly, the international equity risk premium is, as displayed in Equation (15), given by:

Et(r
i
t+1)− rf t =

{
ξi2Σ + ln

[
1− (m2 + ξi2)Σ

]
− ln(1−m2Σ)

}
(ΩYt + e)︸ ︷︷ ︸

The Global Compensation Part

+ Idiosyncratic Parts.

The total country equity risk premiums can also be driven by a pure local risk compensation component, which
however is not the focus of the paper and in theory should be un-predictable by common/US predictors, and
hence is abbreviated above without loss of generality.
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E. Individual US state variable processes and estimation results

In this appendix, we complement Section 4 by providing the exact dynamic processes of individual state
variables and their detailed estimation results:

Σmωm,t+1 ≡

 θt+1 − Et(θt+1)
qt+1 − Et(qt+1)

illiqt+1 − Et(illiqt+1)

 , (E1)

where θt+1 denotes the economic growth, qt+1 risk aversion, and illiqt+1 stock market illiquidity. Our state
variable system is estimated and assumed realistic at the monthly frequency.

E.1. Dynamic processes

The economic growth state variable is assumed to follow a reduced-form dynamic process that captures
time-varying expected growth and asymmetric/skewed and heteroskedastic shocks to be potentially consistent
with recent work (see, e.g., Adrian, Boyarchenko, and Giannone (2019)):

θt+1 = θ + ρθ,θ(θt − θ) + ρθ,θp(θpt − θp) + ρθ,θn(θnt − θn) + δθ,θpωθp,t+1 − δθ,θnωθn,t+1, (E2)

where the conditional mean is subject to an AR(1) term capturing persistence as well as changes in expected
good and bad economic uncertainties capturing the GARCH-in-mean intuition. As in Bekaert, Engstrom, and Xu
(forthcoming), the disturbance of the log economic growth is decomposed into two independent centered gamma
shocks:

ωθp,t+1 = Γ(θpt, 1)− θpt,
ωθn,t+1 = Γ(θnt, 1)− θnt,

where ωθp,t+1 (ωθn,t+1) governs the right-tail (left-tail) dynamics of the growth distribution with shape parameter
θpt (θnt) determining the conditional higher moments of the growth disturbance shock. For example, given the
moment generating function (MGF) of independent gamma shocks, the conditional variance of θt+1 is δ2θ,θpθpt +
δ2θ,θnθnt and the conditional unscaled skewness is 2δ3θ,θpθpt−2δ3θ,θnθnt. Increases in θpt (θnt) imply higher (lower)
conditional skewness while increasing conditional variance, and hence θpt (θnt) can be interpreted as the “good”
(“bad”) uncertainty state variable. This disturbance structure is one of the non-Gaussian shock assumptions
that the literature has explored to realistically model macro or financial state variable processes (see, e.g., Eraker
and Shaliastovich (2008), Bekaert, Engstrom, and Xing (2009), Fulop, Li, and Yu (2015), Segal, Shaliastovich,
and Yaron (2015), De Groot (2015), Bekaert and Engstrom (2017), Xu (2021)). The dynamics of the good and
bad economic uncertainty state variables follow AR(1) processes:

θpt+1 = θp+ ρθp(θpt − θp) + σθpωθp,t+1, (E3)

θnt+1 = θn+ ρθn(θnt − θn) + σθnωθn,t+1. (E4)

Define a macroeconomic state variable vector, Ymac,t ≡
[
θt θpt θnt

]′
, and its unconditional mean Ymac ≡[

θ θp θn
]′

.
The risk aversion state variable, qt, evolves over time with a state-dependent conditional mean and a

disturbance that is exposed to economic fundamental shocks. The residual is then separated into two independent
gamma shocks, ωqh,t+1 and ωql,t+1, potentially capturing distinct behaviors of the right-tail (high risk aversion)
and left-tail (low risk aversion) preference shocks:

qt+1 = q + ρq,q(qt − q) + ρq,qh(qht − qh) + ρq,mac
(
Ymac,t − Ymac

)
+ δq,θpωθp,t+1 + δq,θnωθn,t+1 + δq,qhωqh,t+1 − δq,qlωql,t+1,

ωqh,t+1 = Γ(qht, 1)− qht,

ωql,t+1 = Γ(ql, 1)− ql,

qht+1 = qh+ ρqh(qht − qh) + σqhωqh,t+1. (E5)

The conditional mean of risk aversion evolves with the macro variables (both level and volatility), an AR(1)
term, and a high risk aversion state variable qht that captures the fluctuation of the right-tail risk aversion shock.
Given that risk aversion heterskedasticity is likely driven by its right-tail movements when risk aversion is high,
we shut down heteroskedasticity coming from the left-tail movements when risk aversion is low to keep the model
relatively simple. Note that our risk aversion dynamics are different from those in the literature. First, Bekaert
et al. (forthcoming) also assume a pure risk aversion shock that is orthogonal to consumption (fundamental)
shocks; they assume its shape parameter same as risk aversion, whereas we elicit a new state variable qht that
does not equal to qt (but should very likely positively correlate with qt empirically, as we do find later). Second, the
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most acknowledged time-varying risk aversion model is Campbell and Cochrane (1999) which assumes that risk

aversion is purely driven by changes in real fundamentals. Finally, define Yq,t =
[
qt qht

]′
, and Yq =

[
q qh

]′
.

The stock market illiquidity process, illiqt, is isomorphic:

illiqt+1 = illiq + ρilliq,illiq(illiqt − illiq) + ρilliq,illiqh(illiqht − illiqh) + ρilliq,illiql(illiqlt − illiql)

+ ρilliq,mac
(
Ymac,t − Ymac

)
+ ρilliq,q

(
Yq,t − Yq

)
+ δilliq,θpωθp,t+1 + δilliq,θnωθn,t+1 + δilliq,qhωqh,t+1 + δilliq,qlωql,t+1 + δilliq,illiqhωilliqh,t+1 − δilliq,illiqlωilliql,t+1,

ωilliqh,t+1 = Γ(illiqht, 1)− illiqht,
ωilliql,t+1 = Γ(illiqlt, 1)− illiqlt,

illiqht+1 = illiqh+ ρilliqh(illiqht − illiqh) + σilliqhωilliqh,t+1,

illiqlt+1 = illiql + ρilliql(illiqlt − illiql) + σilliqlωilliql,t+1, (E6)

where illiqht (illiqlt) captures the right-tail (left-tail) of the pure illiquidity disturbance that is cleansed from
risk aversion and macro shocks.

E.2. Estimation results

The estimation of the three state variable systems is conducted sequentially given the overlaying shocks.
First, the economic growth and uncertainty state variables are estimated using a monthly sample from 1947/02 to
2019/12 and the Approximate Maximum Likelihood (AML) methodology in Bates (2006). Then, the risk aversion
measure uses the qt series from Bekaert et al. (forthcoming), from 1986/06 to 2019/12, and is first projected on
known macro variables; the disturbance is estimated using Bates (2006)’s. Finally, the stock market illiquidity
measure is constructed using Amihud (2002)’s methodology, from 1985/01 to 2019/12, and is first projected on
known variables; the disturbance is also estimated using Bates (2006)’s. (Below: ∗∗∗ (∗∗, ∗): 1% (5%, 10%) test)

A. Estimation Results of θt, θpt, θnt
θt: θ ρθ,θ ρθ,θp ρθ,θn δθ,θp δθ,θn
Coeff. 0.0023*** 0.3799*** 4.02E-05 -0.0001 0.0001*** 0.0028***
SE (0.0003) (0.0313) (0.0002) (0.0012) (2.81E-5) (0.0003)

θpt: θp ρθp δθp
Coeff. 500 (fix) 0.9979*** 0.3739***
SE (0.0171) (0.0173)

θnt : θn ρθn δθp
Coeff. 10.3362*** 0.9525*** 2.2996***
SE (2.0747) (0.0096) (0.1907)

B. Estimation Results of qt, qht
qt: q ρq,q ρq,qh ρq,θ ρq,θp ρq,θn
Coeff. 0.3266*** 0.7124*** -0.0006 -3.1851*** 0.0008** 0.0011
SE (0.0102) (0.0355) (0.0004) (0.9238) (0.0003) (0.0009)

δq,θp δq,θn δq,qh δq,ql ql
Coeff. 0.0004 0.0185*** 1.0767*** 0.0906*** 786.6892***
SE (0.0003) (0.0034) (0.0645) (0.0001) (102.74)

qht: qh ρqh δqh
Coeff. 0.872*** 0.5677*** 1.0767***
SE (0.0670) (0.0307) (0.0645)

C. Estimation Results of illiqt, illiqht, illiqlt
illiqt: illiq ρilliq,illiq ρilliq,illiqh ρilliq,illiql
Coeff. 8.9526*** 0.9521*** 0.0001 -0.0005
SE (0.1311) (0.0147) (0.0046) (0.0044)

ρilliq,θ ρilliq,θp ρilliq,θn ρilliq,q ρilliq,qh
Coeff. -15.2507 0.0186* 0.0145 -4.622* 1.5002***
SE (27.2003) (0.0113) (0.0317) (2.5668) (0.4929)

δilliq,θp δilliq,θn δilliq,qh δilliq,ql δilliq,illiqh δilliq,illiql
Coeff. 0.0054 0.0345 -1.2834** -0.004 2.0855*** 0.7175***
SE (0.0077) (0.0988) (0.5396) (0.0052) (0.0351) (0.0323)

illiqht: illiqh ρilliqh δilliqh
Coeff. 1.1458*** 0.9244*** 0.4687***
SE (0.0481) (0.0413) (0.0103)

illiqlt: illiql ρilliql δilliql
Coeff. 0.699*** 0.8651*** 0.0219***
SE (0.0347) (0.0900) (0.0025)
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We next compare the closeness between average conditional moments (mean, variance) and empirical
unconditional moments of θt+1, qt+1, and illiqt+1. Bold values indicate that the average conditional moments
are statistically close to data. Moment matching is expected given the highly specified model assumptions; given
that our paper is not about selecting the most efficient dynamic process but obtaining realistic estimates of state
variables, we do not expand the model comparison exercise and follow existing evidence and frameworks in the
literature.

θt+1 qt+1 illiqt+1

Data Model Data Model Data Model
Mean 0.0023*** 0.0025 0.3023*** 0.3049 8.9468*** 8.9570

(0.0003) (0.0084) (0.0084)
Variance 7.33E-05*** 6.11E-05 0.0091*** 0.0094 6.632*** 7.4434

(7.73E-06) (0.0018) (1.1573)

Figures below depict the dynamics of state variables in the macro, risk aversion, and stock market illiquidity
systems, respectively: (1) From top to bottom: Economic growth (gray) and its conditional mean (red); good
macro uncertainty state variable θpt; bad macro uncertainty state variable θnt; total conditional volatility.
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(2) From top to bottom: Risk aversion state variable qt from Bekaert et al. (forthcoming) (gray) and its conditional
mean (red); high risk aversion state variable qht; total conditional volatility.
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(3) From top to bottom: Stock market illiquidity measure using Amihud (2002)’s method (gray) and its condi-
tional mean (red); high market illiquidity state variable illiqht; low market illiquidity state variable illiqlt; total
conditional volatility.
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F. Implied international stock return predictive coefficients of
DVP and UVP in Section 5.1.2

In Equation (22), the model-implied κ-month predictive coefficients of DVP, UVP for country i are:

b̂i,Dκ ≡
Cov(v̂pDt , ÊP

i
κ,t)

V ar(v̂pDt )
=

(
V ′κΞWD

)(
WD′ΞWD

) ,
b̂i,Uκ ≡

Cov(v̂pUt , ÊP
i
κ,t)

V ar(v̂pUt )
=

(
V ′κΞWU

)(
WU′ΞWU

) . (F7)

• ∀x ∈ {θp, θn, qh, illiqh, illiql}, denote vx,κ,0 + vx,κ,1EconomicIntegration
i + vx,κ,2FinancialIntegration

i

from Equation (21) by vix,κ,const.

• Matrix Vκ is a vector matrix consisting of 20 unknown v’s from Equation (21) for each horizon κ,

Vκ =
[
viθp,κ,const viθn,κ,const viqh,κ,const viilliqh,κ,const viilliql,κ,const vθp,κ,3 vθn,κ,3 vqh,κ,3 villiqh,κ,3 villiql,κ,3

]′
.

• Matrix Ξ is the covariance-variance matrix of [θpt, θnt, qht, illiqht, illiqlt , θptzt , θntzt, qhtzt , illiqhtzt,
illiqltzt].

• Matrices WD and WU are vector matrices consisting of 10 known parameters from Section 5.1.1:

WD =
[
wDθp,0 wDθn,0 wDqh,0 wDilliqh,0 wDilliql,0 wDθp,1 wDθn,1 wDqh,1 wDilliqh,1 wDilliql,1

]′
,

WU =
[
wUθp,0 wUθn,0 wUqh,0 wUilliqh,0 wUilliql,0 wUθp,1 wUθn,1 wUqh,1 wUilliqh,1 wUilliql,1

]′
.

G. The role of zt in the global equity risk premium loadings on
common risk premium determinants

This plot complements Figure 8-(A) and Footnote 22 using zt=min(zt) and zt=max(zt). The message is
that zt seems to matter insignificantly in the EP loadings.
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